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1

Introduction

Modern wireless sensor networks are made up of a large number of inexpensive devices that
are networked via low power wireless communications. It is the networking capability that
fundamentally differentiates a sensor network from a mere collection of sensors, by enabling
cooperation, coordination, and collaboration among sensor assets. Harvesting advances in
the past decade in microelectronics, sensing, analog and digital signal processing, wireless
communications, and networking, wireless sensor network technology is expected to have
a significant impact on our lives in the twenty-first century. Proposed applications of sensor
networks include environmental monitoring, natural disaster prediction and relief, homeland
security, healthcare, manufacturing, transportation, and home appliances and entertainment.
Sensor networks are expected to be a crucial part in future military missions, for example,
as embodied in the concepts of network centric warfare and network-enabled capability.

Wireless sensor networks differ fundamentally from general data networks such as the
internet, and as such they require the adoption of a different design paradigm. Often sensor
networks are application specific; they are designed and deployed for special purposes.
Thus the network design must take into account the specific intended applications. More
fundamentally, in the context of wireless sensor networks, the broadcast nature of the
medium must be taken into account. For battery-operated sensors, energy conservation is
one of the most important design parameters, since replacing batteries may be difficult or
impossible in many applications. Thus sensor network designs must be optimized to extend
the network lifetime. The energy and bandwidth constraints and the potential large-scale
deployment pose challenges to efficient resource allocation and sensor management. A gen-
eral class of approaches – cross-layer designs – has emerged to address these challenges.
In addition, a rethinking of the protocol stack itself is necessary so as to overcome some
of the complexities and unwanted consequences associated with cross-layer designs.

This edited book focuses on theoretical aspects of wireless sensor networks, aiming
to provide signal processing and communication perspectives on the design of large-scale
sensor networks. Emphasis is on the fundamental properties of large-scale sensor networks,
distributed signal processing and communication algorithms, and novel cross-layer design
paradigms for sensor networking.

Wireless Sensor Networks: Signal Processing and Communications Perspectives A. Swami, Q. Zhao, Y.-W. Hong and L. Tong
Ò 2007 John Wiley & Sons, Ltd
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The design of a sensor network requires the fusion of ideas from several disciplines.
Of particular importance are the theories and techniques of distributed signal processing,
recent advances in collaborative communications, and methodologies of cross-layer design.

This book elucidates key issues and challenges, and the state-of-the-art theories and
techniques for the design of large-scale wireless sensor networks. For the signal processing
and communications research community, the book provides ideas and illustrations of the
application of classical theories and methods in an emerging field of applications. For
researchers and practitioners in wireless sensor networks, this book complements existing
texts with the infusion of analytical tools that will play important roles in the design of
future application-specific wireless sensor networks. For students at senior and the graduate
levels, this book identifies research directions and provides tutorials and bibliographies to
facilitate further investigations.

The book is divided into three parts: I Fundamental Properties and Limits; II Signal
Processing for Sensor Networks; and III Communications, Networking and Cross-Layer
Designs.

Part I Fundamental Properties and Limits

Despite the remarkable theoretical advances in link-level communications, scientific under-
standing of and design methodologies for large-scale complex networks, such as wireless
sensor networks, are still primitive. The variety of potential applications and sensor devices,
the dynamics and unreliability of the wireless communication medium, and the stringent
resource constraints all present major obstacles to a fundamental understanding of the
structure, behavior, and dynamics of large-scale possibly heterogeneous sensor networks.

Part I presents representative samples of recent developments in the discovery of fun-
damental properties and performance limits of large-scale sensor networks. The aim is to
show that despite the vast differences in applications and communication environments,
there exist universal laws and performance bounds, especially in the asymptotic regime,
that may lead to systematic approaches to the design of such large-scale complex networks.

Chapter 2 by Gastpar focuses on communication aspects: the rate and fidelity of trans-
porting sensor measurements to a fusion center for data processing. Based on a digital
communication architecture that separates source coding from channel coding, limits on
the achievable rate-distortion regions under power constraints are presented. Compelling
examples are given to illustrate the possible performance loss incurred by such a separated
design.

Chapter 3 by Giridhar and Kumar addresses in-network information processing. Instead
of transmitting measurements to a fusion center for processing, sensor nodes are responsible
for computing a certain function of all measurements, for example, the mean or the maxi-
mum, through inter-node communications. The quantities of interest are the maximum rate
at which such in-network computation can be performed and how it scales with network
size. Interestingly, the scaling behavior depends not only on the communication topology
of the network, but also on the properties of the function being calculated.

Chapter 4 by Negi, Rachlin, and Khosla is concerned with the fundamental relationship
between the number of sensor measurements and the ability of the network to identify
the state of the environment being monitored. The focus of the chapter is on detec-
tion problems where the number of possible hypotheses is large. For this problem of
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large-scale detection, a lower limit on the sensing capacity of sensor networks is derived
that characterizes the minimum rate at which the number of sensor measurements should
scale with the number of hypotheses in order to achieve the desired detection accuracy. An
intriguing analogy between the sensing capacity of sensor networks and channel coding
theory for communication channels points to the possibility of porting the large body of
results available on communication channels to the design of large-scale sensor networks.

The last chapter of Part I by Chen and Zhao focuses on the lifetime of sensor networks
to address the energy constraint. Given that the sensor network lifetime depends on network
architectures, specific applications, and various parameters across the entire protocol stack,
an accurate characterization of network lifetime as a function of key design parameters
is notably difficult to obtain. It is shown in this chapter that there is, in fact, a simple
law that governs the network lifetime for all applications (event-driven, clock-driven, or
query-driven), under any network configuration (centralized, ad hoc, or hierarchical). This
law of network lifetime reveals the key role of two physical layer parameters – residual
energy and channel state – and a general principle for the design of upper layer network
protocols.

This set of four chapters points to promising directions toward a scientific understand-
ing of core principles and fundamental properties of large complex sensor networks. Many
problems, however, remain. When is the separated design of source coding and channel
coding sufficient to achieve the best scaling behavior? How can delay and energy con-
straints be adequately modeled within the information theoretic framework? What are the
fundamental tradeoffs between communication and computation under energy and com-
plexity constraints? These are only a few of the many challenges we face in advancing the
basic science of large-scale wireless sensor networks.

Part II Signal Processing for Sensor Networks

Part II of this book focuses on signal processing problems in sensor networks. Fundamental
to sensor signal processing are distributed information processing at the individual sensor
nodes and the fusion of sensor measurements for global signal processing.

Distributed detection is a classical subject that attracted considerable interest in the late
1980s and early 1990s when the power of DSP and wired communications enabled the
networking of distributed radar systems for target detection and tracking. Radars generate
enormous amount of data, and transmitting all the measurements to a central processing
location is neither feasible nor necessary. The natural research focus then was how to
quantize measurements at the local sensor nodes and how to derive optimal inference
algorithm at the fusion center.

While many technical issues in classical distributed detection remain in modern wireless
sensor networks, several new challenges have arisen. The fading and broadcast aspects of
the wireless transmission medium, the presence of interference, and constraints on energy
and power demand a new design paradigm. Chapter 6 by Veeravalli and Chamberland is
an introduction to distributed detection for modern wireless sensor networks. This chapter
provides an informative survey of classical results and sheds new light on the interplay
among quantization, sensor fusion under resource constraints, and optimal detection perfor-
mance. The approach based on asymptotic statistical techniques is especially appropriate
for large sensor networks.
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Distributed estimation deals with statistical inference problems when the underlying
phenomenon cannot be modeled by a few disjoint hypotheses; there are in general innum-
berable possible distributions from which sensor measurements are generated. It is thus not
possible to design a sensor quantization scheme that is uniformly optimal. Chapter 7 on
distributed estimation by Ribeiro, Schizas, Xiao, Giannakis and Luo provides a broad cov-
erage of estimation problems in wireless sensor networks when sensor measurements must
be quantized or compressed. Both point estimation and Bayesian setups are considered,
and performance bounds provided.

Chapter 8 on distributed learning by Predd, Kulkarni, and Poor introduces learning
theory and techniques for sensor networks. The focus here is on nonparametric statisti-
cal inference under bandwidth and energy constraints. The authors develop a framework
for distributed learning and draw connections with classical concepts. Different network
architectures and learning techniques are presented.

Chapter 9 by Çetin, Chen, Fisher, Ihler, Moses, Wainwright, Williams and Willsky
introduces graphical models and fusion for sensor networks. Statistical correlations in sensor
measurements have a natural graphical model representation in which the graph vertices
represent the random variables and corresponding edges their statistical dependency. The
study of graphical models has led to fundamental insights in coding and decoding techniques
in communications. For statistical inference using wireless sensor networks, one can take
the view that inference should be derived from a posteriori distributions (belief), and the
calculation of such distributions in a distributed fashion is at the core of sensor information
processing. This chapter provides an introduction to various message passing techniques
and their applications in sensor self-localization, tracking, and data association problems.
Energy and bandwidth constraints are once again key design parameters.

The set of four chapters in Part II have explored important aspects of signal processing
in sensor networks, including detection, estimation, learning and fusion. However, many
challenges remain. What is the role of quantization when nodes must code their bits to
cope with fading and noisy channels, or when they must otherwise packetize the data?
What is the right architecture for decentralized inference in a sensor network, keeping in
mind that the sensing graph is not identical to the communications graph? How should
multi-hop delays and temporal (de)correlation be modeled and handled? What is the role
of collaboration and consensus in a sensor network? Given that energy and bandwidth
constraints are severe, overhead in bits (e.g., in the headers, or number of messages) or
Joules (e.g., energy consumed in processing, reception, and transmission) should not be
ignored. Finally, while asymptotic analyses provide critical insights and design guidelines,
issues related to finite networks need to be explored.

Part III Communications, Networking and Cross-Layered
Designs

Conventional networking and communication protocols provide generic designs that are
suitable for a large number of applications and utilize performance measures such as
throughput, fairness, delay and bit-error-rate (BER) etc. as design criteria. These methods
are suitable for applications such as telecommunications or computer data networks, where
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users act as equal individuals and transmit messages that have little relation with others.
The main concern in these cases is the quality-of-service (QoS) that each user receives.

In contrast to conventional communication and data networks, sensor networks con-
sist of users that are deployed to achieve a common goal, to sense a common event or
to measure highly correlated data due to the spatial correlation of most physical phe-
nomenon. The sensors are cooperative in nature and should work together to fulfill their
application needs. In fact, two properties of sensor networks can be exploited to improve
communication efficiency: the cooperative nature of the sensors and application-dependent
performance measures. In Part III of this book, we gather four chapters that consider these
properties in the design of physical-layer transmissions, medium access control policies,
routing protocols, sensor actuation and transmission scheduling.

Cooperation can be applied to many areas of communications and networking. At the
physical layer, cooperation has been realized by allowing users to relay messages and by
adopting signal-combining techniques at the destination to enhance reception. Diversity
and multiplexing gains can thereby be achieved by exploiting the independent fading paths
attained through cooperative relaying. Local resources such as battery-energy and chan-
nel bandwidth can be shared among sensors and optimally allocated from a system-wide
perspective. This differs from that in conventional networks where fairness is a critical
issue and may reduce the effectiveness of cooperation. In Chapter 10 by Sirkeci-Mergen
and Scaglione, a tutorial review of cooperative communication schemes is given along with
novel randomized approaches that are used to reduce the system complexity and to enhance
the bandwidth efficiency of cooperative methods.

The efficiency of resource utilization can be further improved if the network is designed
to optimize application-dependent performance measures. Specifically, data aggregation has
been proposed to reduce traffic in multi-hop sensor networks. In contrast to data networks,
here data that are unreliable or have low information context can be dropped. The efficiency
of data aggregation techniques is highly dependent on the specific routing algorithm. For
example, in data gathering applications, sensors may compress the incoming data along with
their local data before relaying to the next sensor in the multi-hop route. In this case, the
compression efficiency is highly dependent on the correlation between the measurements
of the sensors in neighboring hops. A discussion of cross-layer routing protocols is given
in Chapter 11 by Misra, Tong and Ephremides. Emphasis is placed on distributed detection
applications where the performance depends on the data gathered through the multi-hop
transmission routes.

An efficient sensor network MAC protocol also plays an important role in improving
the efficiency of resource utilization. Conventional MAC protocols are designed for users
that have independent data to transmit and that are competing for the use of the channel.
The goal is to avoid interference and collision between different users. In contrast, in a well-
designed cooperative sensor network, users that access the same channel simultaneously
may improve the detection performance, as opposed to causing interference or collision.
A survey of sensor network MAC protocols and design concepts for cooperative MAC
protocols is given in Chapter 12 by Hong and Varshney. More interestingly, the cooperative
advantages are further exploited by taking into consideration the properties of the underlying
application or the statistics of the sensors’ measurements. It is shown that MAC efficiency
can be improved by allocating the same transmission channel to users that have highly
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correlated messages to transmit. Examples are given for two specific sensor applications:
a data gathering application and a distributed detection application.

Duty-cycling is a technique used to reduce energy consumption and extend network
lifetime. Nodes may enter a sleep state when their presence is not necessary to maintain
the functionality of the system, e.g., when no event occurs in the sensor’s vicinity or when
no message is routed through the sensor. In this case, the activation of sensors should
be optimized according to the statistics of the underlying measurements or the goal of
the application. Due to the large-scale deployment of sensors, no centralized control can
be applied to schedule the activation period of the sensors and, therefore, decentralized
methods are required. In Chapter 13 by Krishnamurthy, Maskery and Ngo, decentralized
sensor activation and transmission scheduling methods are discussed from a game-theoretic
point of view. The sensors are able to learn the reliability of their measurements and decide
locally when they should schedule their activation and transmissions.

In Part III, the importance of cross-layer communication and networking protocols
is emphasized. These theoretical studies can provide insights for sensor network design.
Nevertheless, caution should be taken when designing cross-layer strategies since it may
obviate the advantages of modularization and result in high system complexity. Moreover,
when only partial functionalities of two modules are jointly optimized, it is not clear
whether the remaining functionalities will be as effective as before. These issues should
also be taken into consideration in the future design of sensor systems.
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Information-theoretic Bounds on
Sensor Network Performance

Michael Gastpar

2.1 Introduction

Sensor networks are subject to tight communication and computation constraints. These
constraints are due to size and cost limitations: many of the most interesting applications
require tiny and cheap sensors. This creates an interesting interplay between energy (and
device size) spent on communication versus computation, and it is unclear which of the two
is the true bottleneck. Some experts show that in current circuitry, the amount of energy
spent on computation at least equals if not exceeds the transmit energy. Other experts use
‘Moore’s law’ to argue that any computational bottleneck will disappear and that we are
still very far away from the ultimate limits of quantum computation.

In this chapter, we will follow the second kind of experts and focus exclusively on the
constraints imposed by communication. The goal is to understand at a fundamental level
the impact of these constraints on the overall usefulness of the sensor network. Specifi-
cally, while we do not claim that they are irrelevant, we will entirely omit computational
constraints and instead assume that all involved devices can perform arbitrary computa-
tions at no cost. This abstraction permits us to understand the effect of communication
constraints and to derive relatively compact performance bounds. It forms the centerpiece
of the success of information-theoretic methods in the analysis of communication systems.

For the most part, this chapter is an overview of known techniques. The chapter is
divided into four main sections. In the first section, we discuss the basic modeling features
that permit an information-theoretic analysis. The second section discusses bounds for

Wireless Sensor Networks: Signal Processing and Communications Perspectives A. Swami, Q. Zhao, Y.-W. Hong and L. Tong
Ò 2007 John Wiley & Sons, Ltd



10 INFORMATION-THEORETIC BOUNDS

digital architectures, by which we mean that the sensors first apply an optimum source
coding stage, and then communicate the resulting source codeword indices across the noisy
channel without making further errors. The third section briefly illustrates the possible
penalties incurred by a digital communication architecture, and the fourth section gives
a short overview of information-theoretic techniques for general (not necessarily digital)
architectures.

Throughout the chapter, we discuss general information-theoretic bounds. We also show
how these bounds apply to a specific scenario that we refer to as the linear Gaussian sensor
network. This helps in making the presented results more concrete: our bounds can then
be expressed in terms of the structure of matrices, rather than as general (and somewhat
abstract) information-theoretic quantities. We also use this example to discuss some of
the ‘scaling-law’ implications of the information-theoretic bounds (i.e., as the number of
sensors becomes very large).

2.2 Sensor Network Models

The main goal of this chapter is to shed light on how the communications resources impact
the overall performance of the sensor network. The specific methods discussed here are
information-theoretic,1 and cannot be applied to all types of sensor networks. They are of
particular interest for sensor networks that monitor an underlying physical reality over a
‘long’ time and need to reproduce some recurring aspects of this physical reality. In other
words, the methods discussed here will not generally lead to relevant performance bounds
for sensor networks that are designed to raise one single alarm in their lifetime.

The sensor network model studied in this chapter is shown in Figure 2.1. There is an
underlying physical phenomenon which we characterize by L variables. These could be
thought of as the degrees of freedom of the system, or, equivalently, its current state. For
the scope of this chapter, each degree of freedom will be modeled as a random process in
discrete time.2 Though we also discuss the scenario where the sensors can directly observe
the state of the system, some of the most interesting considerations discussed in this chapter
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Figure 2.1 The general sensor network problem considered in this chapter.

1Sometimes also referred to as Shannon-theoretic, referring to the original paper of Shannon (1948), in an
attempt to distinguish them from statistical meanings of the term ‘information-theoretic’ (as in Fisher information).

2The discrete-time model is justified by arguing that the state of the system does not change very rapidly. This
may be a serious restriction for certain scenarios. The continuous-time extension is currently under investigation.
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apply when the underlying degrees of freedom (or state) cannot be observed directly. Here,
each sensor measures a (different) noisy version of a combination of all of these variables.
We model this observation process in a probabilistic fashion as a conditional distribution
of the observations given the state. The sensors may have the chance to cooperate to some
(generally limited) extent, and there may be feedback from the base stations to each of
the sensors. Based on the respective sensor readings, the inter-sensor communication, and
the feedback signals, each sensor has to produce an output to be transmitted over the
communication link (e.g., a wireless link). This channel is again modeled in a probabilistic
fashion by a conditional distribution. The channel outputs are received by the base stations.
For the information-theoretic bounds discussed in this chapter, we shall assume that the
central data collection unit is ideally linked (e.g., over a backbone network) to the base
stations. The goal of the data collector is to get to know, not the raw sensor readings, but
the values of the underlying degrees of freedom (or state) of the physical system.

More precisely, and to fix notations, the underlying physical phenomenon is character-
ized by the sequence of random vectors

{S[n]}n≥0 = {(S1[n], S2[n], . . . , SL[n])}n≥0, (2.1)

where n is the time index. The arguments presented in this chapter address the case where
{S[n]}n≥0 is a sequence of independent and identically distributed (iid) random vectors. To

simplify the notation in the rest of the chapter, we denote sequences as SN def= {S[n]}Nn=1.
We use the upper case S to denote the random variable, and the lower case s to denote its
realization. The distribution of S is denoted by PS(s). To simplify notation, we will also use
the shorthand P (s) when the subscript is just the capitalized version of the argument in the
parentheses. The random vector S[n] is not directly observed by the sensors. Rather, sensor
m observes a sequence UN

m = {Um[n]}Nn=1 which depends on the physical phenomenon
according to a conditional probability distribution,

p
( {um[n]}n≥0 , m = 1, 2, . . . , M

∣∣ {s�[n]}n≥0 , � = 1, 2, . . . , L
)

(2.2)

For the scope of this chapter, the observation process is memoryless in the sense that the
observation at time n only depends on the source outputs at time n. Hence, the observation
process can be characterized by P (u1, . . . , uM |s1, . . . , sL). Sensor m may also receive
information from other sensors as well as from the destination. Denoting the totality of this
information as it is available to sensor m up to time n − 1 by V n−1

m , the signal transmitted
by sensor m at time n can be expressed as

Xm[n] = F (n)
m

(
UN

m , V n−1
m

)
. (2.3)

The transmitted signals satisfy a power, or more generally, a cost constraint of the form

E
[
ρm(XN

m)
] ≤ �m. (2.4)

More generally, we may also allow constraints of the form

E
[
ρ(XN

1 , XN
2 , . . . , XN

M)
] ≤ �. (2.5)

One example of a constraint of this kind is a sum power constraint on the outputs of the
sensors, allowing for power allocation between them.
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The final destination uses the outputs of the communication channel, Y N =(YN
1 , YN

2 , . . . ,

YN
J ) to construct estimates ŜN = (ŜN

1 , ŜN
2 , . . . , ŜN

L ). The task is to design the decoder G

such that ŜN = G(YN) is as close to SN as possible, in the sense of an appropriately chosen
distortion measure d(sN , ŝN). For a fixed code, composed of the encoders F1, F2, . . . , FM at
the sensors and the decoder G, the achieved distortion � is computed as follows:

� = E
[
d
(
SN, ŜN

)]
. (2.6)

The relevant figure of merit is therefore the trade-off between the cost � of the trans-
mission (Eqn. (2.4)), and the achieved distortion level � (Eqn. (2.6)). The problem studied
in this chapter is that of finding the optimal trade-offs (�, �), where optimal is understood
in an information-theoretic sense, i.e., irrespective of delay and complexity, as N → ∞.

2.2.1 The Linear Gaussian Sensor Network

For illustration purposes and to get a sense of the value of the information-theoretic tech-
niques discussed in this chapter, we keep as our running example the paradigmatic scenario
referred to as the linear Gaussian sensor network. This is schematically shown in Figure 2.2.
Sensor m observes a linear combination of the L underlying complex-valued source signals,

src

�
S1

�
S2

.

.

.

�
SL

A

� ��
W1

�
U1

� ��
W2

�
U2

� ��
WM

�
UM

observation

sensor 1 �
X1

sensor 2 �
X2

.

.

.

sensor M �
XM

B

� ��
Z1

�
Y1

.

.

.

� ��
ZJ

�
YJ

communication

dec

�
Ŝ1

�
Ŝ2

.

.

.

�
ŜL

des

Figure 2.2 The Gaussian sensor network: A vector source S, not necessarily Gaussian, is
observed M-fold through a matrix A and in additive white Gaussian noise, independently
by M sensors. The M sensors communicate over a AWGN MIMO channel, characterized
by the matrix B, to a base station that houses the central estimation officer. The sensors
may have (generally limited) cooperation capabilities, indicated by the dotted lines in the
figure.
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subject to additive white Gaussian observation noise, as follows:

Um[n] = Wm[n] +
L∑

�=1

am,�S�[n], (2.7)

where am,� are appropriate complex-valued constants that are assumed to be fixed and
known throughout. The observation noises Wm[n] are i.i.d. (both over n and over m)
circularly symmetric complex Gaussian random variables of mean zero and variance σ 2

W .
We will also use vector (and matrix) notation to express this in a more compact form as

U[n] = A(M)S[n] + W[n], (2.8)

where U[n] = (U1[n], U2[n], . . . , UM [n])T is a complex-valued column vector of length
M , A(M) is a complex-valued matrix of dimensions M × L, with entries {A(M)}i,j = ai,j ,
S[n] = (S1[n], S2[n], . . . , SL[n])T is a complex-valued column vector of length L, and
W[n] = (W1[n], W2[n], . . . , WM [n])T is a column vector of circularly symmetric complex
Gaussian random variables of mean zero and covariance matrix σ 2

WIM .
The encoding task can then be described as follows: Sensor m makes N consecutive

observations {um[n]}Nn=1. In some versions of the problem, sensor m may also receive
a limited amount of additional information from other sensors, and we will denote this
additional information collectively by Vm. Based on the observed sequence {um[n]}Nn=1 and
the additional information Vm, sensor m decides on a codeword {xm[n]}KN

n=1 to be transmitted
across the channel. Here, the parameter K specifies the relative (temporal) bandwidth of
the communication channel with respect to the source. Concretely, one can think of K

channel uses that are available for the transmission of each source sample. This induces
a probability distribution over the codewords of sensor m, and we can thus think of the
output of sensor m as a random vector {Xm[n]}KN

n=1. The codewords of sensor m must be
designed to satisfy an average power constraint as follows:

1

KN

KN∑
n=1

E
[|Xm[n]|2] ≤ Pm. (2.9)

Rather than enforcing such a constraint individually for each sensor, we will often allow
power allocation, i.e., any choice of powers P1, P2, . . . , PM satisfying

M∑
m=1

Pm ≤ Ptot (M). (2.10)

The receiver observes these codewords across a Gaussian vector channel. More specif-
ically, at time n, the receiver observes a vector {Yj [n]}Jj=1 with components

Yj [n] = Zj [n] +
M∑

m=1

bj,mXm[n], (2.11)

where the channel noises Zj [n] are i.i.d. (both over n and over j ) circularly symmetric
complex Gaussian random variables of mean zero and variance σ 2

Z.
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Again, we will find it convenient to use vector notation occasionally, and rewrite (2.11)
more compactly as

Y[n] = B(M)X[n] + Z[n], (2.12)

where Y[n] = (Y1[n], Y2[n], . . . , YJ [n])T is a complex-valued column vector of length
J , B(M) is a complex-valued matrix of dimensions J × M , with entries {B(M)}i,j = bi,j ,
X[n] = (X1[n], X2[n], . . . , XM [n])T is a complex-valued column vector of length M , and
Z[n] = (W1[n], W2[n], . . . , WJ [n])T is a column vector of circularly complex Gaussian
random variables of mean zero and covariance matrix σ 2

WIJ .
Based on the sequence of channel output vectors Y[n], the goal is to construct an esti-

mate Ŝ[n] of the underlying source vector sequence S[n]. The success of such reconstruction
will be assessed in terms of the resulting mean-squared error, defined as

DN(M) = 1

N

N∑
n=1

1

L
E
[
‖S[n] − Ŝ[n]‖2

]
. (2.13)

The bounds discussed in this chapter will be interpreted in terms of fundamental relation-
ships between the matrices A(M) and B(M), the total power Ptot (M), and the end-to-end
distortion DN(M).

2.3 Digital Architectures

One of the crown jewels of information theory is the source/channel separation theorem,
given by Shannon (1948), Section 13, and more generally in Shannon (1959), Theorem
5, stating that an overall coding problem of the kind defined in Section 2.2 can, in some
cases, be split into two separate coding problems: one in which the source is compressed
using R bits per source sample, and one in which R bits are communicated reliably across
the channel (i.e., without making any errors). This two-stage approach will be referred to
as ‘digital architecture’ for the purpose of this chapter. Apart from optimality, such an
architecture also has very attractive modularity properties, and therefore, this approach has
guided the design of virtually all contemporary communication systems.

In this section, we discuss information-theoretic bounds on the performance of digi-
tal architectures in sensor networks. While such an architecture is interesting in and of
itself, it does entail a performance penalty in sensor networks, by contrast to the standard
point-to-point communication problem. That is, there is no general guarantee that a digital
architecture will have a performance close to the optimum, not even in an asymptotic sense
(as the number of nodes becomes large). We discuss this issue in more detail in Section 2.4.
In the final section (Section 2.5), we discuss performance bounds for general architectures.

2.3.1 Distributed Source Coding

In this section, we review mostly known bounding techniques for the distributed source
coding problem. The linear Gaussian special case is illustrated in Figure 2.3, but the bounds
discussed here are valid more generally.

More specifically, as in the discussion in Section 2.2, consider a set of L source sequences,
denoted by {S�[n]}, for � = 1, 2, . . . , L, see Equation (2.1). There are M encoders, each of
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Figure 2.3 The (distributed) source coding problem associated with the linear Gaussian
sensor network considered in this chapter and illustrated in Figure 2.2.

which makes a sequences of observations {Um[n]}n≥0, for m = 1, 2, . . . , M , and we will
restrict attention to a memoryless observation model, as described in the discussion follow-
ing Equation (2.2). Encoder m must produce a bit sequence that appears at a rate of Rm bits
per source symbol, for m = 1, 2, . . . , M . The decoder (‘fusion center’) observes all M bit
streams and is required to produce source reconstruction sequences

Ŝ�[n], for � = 1, 2, . . . , L, (2.14)

such as to meet fidelity criteria:

D� = lim
N→∞

1

N

N∑
n=1

E
[
d
(
S�[n], Ŝ�[n]

)]
. (2.15)

Hence, the performance of such a rate-distortion code can be captured in terms of a rate-
distortion vector (R1, R2, . . . , RM, D1, D2, . . . , DL) in the positive quadrant of (M + L)-
dimensional real space. The set of all rate-distortion vectors that correspond to actual
source coding schemes is called the rate-distortion region. For a fixed set of distortion
requirements (D1, D2, . . . , DL), we will denote the set of rate vectors that permit to satisfy
these distortion constraints as

R(D1, . . . , DL). (2.16)

For brevity, and in order to gain insight, we will often focus on two simple key parameters
of the rate-distortion vector, rather than its entirety. Specifically, we will consider the total
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(sum-)rate

Rtot (D) =
M∑

m=1

Rm, (2.17)

and the sum of the distortion terms,

D =
L∑

�=1

D�. (2.18)

The task is then to characterize the optimal trade-offs between Rtot and D. Note that
this reduced characterization conceptually assumes that rate can be allocated arbitrarily
between the sensors, and that all sources S� are equally important. However, none of the
bounding techniques considered in this chapter fundamentally relies on such a symmetry
assumption.

Direct source observation

We first consider the simplified case where the sources are observed directly, i.e., the
number of sources is equal to the number of observations, L = M , and where there is no
observation noise. Specifically, with a small loss of generality, we consider

Um[n] = Sm[n]. (2.19)

A first lower bound results by dropping the constraint that encoding be performed in a
distributed manner. For the purpose of this chapter, we will refer to this lower bounding
argument as ‘centralized’. Clearly, for this case, the answer is merely the standard rate-
distortion function, leading to the following bound.

Theorem 2.3.1 (centralized lower bound, sum rate) The sum rate Rtot required to enable
the decoder to reconstruct the sources S�, � = 1, 2, . . . , L, at sum distortion D satisfies

Rtot (D) ≥ min I (U1, . . . , UM; Ŝ1, . . . , ŜL), (2.20)

where the minimum is over all p(ŝ1, . . . , ŝL|u1, . . . , uM) for which
∑L

�=1 E[d�(S�, Ŝ�)] ≤ D.

A proof of this theorem can be found in Cover and Thomas (2006), p. 315, or Berger
(1971).

Using the results of Wyner and Ziv (1976), we can refine this characterization.

Theorem 2.3.2 (centralized lower bound, rate region) The rate vectors (R1, R2, . . . ,

RM) required to enable the decoder to reconstruct the sources S�, � = 1, 2, . . . , L, at dis-
tortions D�, respectively, satisfy, for each subset S ⊆ {1, 2, . . . , M},3∑

m∈S
Rm ≥ RS

def= min
V

I ({US;V ) − I (USc;V ) (2.21)

where the minimum is taken separately for each S over all random variables V with p(v|uS)
for which there exist reconstruction functions Ŝ�(V , USc ) such that E[d�(S�, Ŝ�)] ≤ D�, for
� = 1, 2, . . . , L.

3Throughout, we will use S to denote a subset of the integers {1, 2, . . . ,M}, and Sc to denote its complement
in the set {1, 2, . . . , M}. Moreover, we will use the notation XS to denote the set of all variables Xm with index
m ∈ S.
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A proof of this theorem can be found in Cover and Thomas (2006), p. 581. The function
RS is often referred to as the Wyner-Ziv rate-distortion function for encoding {Um}m∈S for
a decoder that has access to the ‘side information’ {Um}m∈Sc .

For the linear Gaussian scenario, we obtain

Corollary 2.3.3 (centralized lower bound, direct source observation) The sum rate Rtot

required to encode an L-dimensional i.i.d. Gaussian vector source with mean zero and
covariance matrix �s = σ 2

S IL in such a way that reconstruction incurs an average sum
distortion of at most D satisfies

Rtot (D) ≥
L∑

�=1

log
α�

D�

, (2.22)

where α�, � = 1, 2, . . . , L, denote the L eigenvalues of the matrix �s , and

D� =
{

ν, if ν < α�,

α�, otherwise.
(2.23)

where
∑L

�=1 D� = D.

This corollary follows straightforwardly from Theorem 2.3.1 by noting that Ŝ� should
be selected jointly Gaussian with S�, for � = 1, 2, . . . , L. See Cover and Thomas (2006),
p. 312.

Clearly, this bound will not generally be interesting for the sensor network scenarios
considered in this chapter: the constraint that encoding be done in a distributed fashion
must be expected to crucially impact the overall performance. Consequently, information-
theoretic arguments have been developed to explicitly take into account this constraint. To
date, these bounds tend to be rather difficult to evaluate, even for the simple Gaussian case
that we use to illustrate the concepts.

The first general bound was presented by Berger (1977) and Tung (1978). It can be
expressed as follows:

Theorem 2.3.4 (Berger-Tung lower bound) The sum rate Rtot required to enable the de-
coder to reconstruct the sources S�, � = 1, 2, . . . , L, at sum distortion D satisfies

Rtot (D) ≥ min I (U1, . . . , UL;V1, . . . , VL), (2.24)

where the minimum is over all joint distributions p(u1, . . . , uL, v1, . . . , vL) that satisfy the
Markov condition

p(vm|u1, . . . , uL) = p(vm|um), for m = 1, 2, . . . , L, (2.25)

and over all mappings Ŝ�(V1, . . . , VL) for which
∑L

�=1 E[d�(S�, Ŝ�)] ≤ D.

The first major difficulty with evaluating this bound for concrete cases at hand is the
selection of the auxiliary random variables. Note that a lower bound is only guaranteed
if the actual minimum is identified. The reason why we cannot solve this for the linear
Gaussian case at hand is because it is not clear to date whether it is sufficient to restrict the
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auxiliary random variables with conditional distributions p(vm|um) to be Gaussian. This
question has been settled recently for the special case L = M = 2 in the work by Wagner
et al. (2005), where it is shown that Gaussian auxiliaries are sufficient.

To get a sense of the bound of Theorem 2.3.4, let us suppose that the source vector
(S1, S2, . . . , SL) is Gaussian with mean zero and covariance matrix �s , as in Corol-
lary 2.3.3. We may evaluate the expression given in Equation (2.24) assuming Gaussian
statistics for the auxiliaries. At this point, the problem becomes a relatively standard mini-
mization problem. To make things simple, let us assume a sufficiently symmetric scenario.
More specifically, we will assume that all the distributions p(vm|um) are equal. Then, we
obtain the following expression:

Rtot (D) =
L∑

m=1

log

(
1 + αm

µ

)
, (2.26)

where α�, � = 1, 2, . . . , L, denote the L eigenvalues of the matrix �s , and

D =
M∑

m=1

αmµ

αm + µ
. (2.27)

It is important to recall that at this point, it is not known whether this is a lower bound.
However, in the shape of an idle thought, we may still compare it to the ‘centralized’
lower bound of Corollary 2.3.3 and note that the main difference lies in what is sometimes
referred to as (inverse) water-filling (see e.g. Cover and Thomas (2006)). Therefore, roughly
speaking, as long as the total rate Rtot is large enough, and the spread of the eigenvalues
α�, for � = 1, 2, . . . , L, is small enough such that in Equation (2.23), we have that D� =
ν, for � = 1, 2, . . . , L, then the difference between the above and the centralized bound
(Corollary 2.3.3) will be insignificant.

The second drawback of the Berger-Tung lower bound of Theorem 2.3.4 is that it
cannot be shown (and should not be expected) to be tight in all but trivial cases. As a
case in point, Wagner (2005) and Wagner and Anantharam (2005) have presented several
examples where the bound is strictly loose.

While in this chapter, we focus on fundamental bounds on sensor network performance,
the natural subsequent question is that of how tight these bounds are. That is, the question
is whether there are actual coding schemes that attain or at least come close to the bounds
discussed above. Most of the information-theoretic analysis of this question follows the lines
of a code construction due to Slepian and Wolf (1973), extended to the rate-distortion case
by Wyner and Ziv (1976), Berger (1977), Tung (1978), Omura and Housewright (1977).
Recent work by Neuhoff and Pradhan (2005) has also studied these questions under very
interesting constraints such as scalar quantization. A detailed discussion of this is beyond
the scope of the present chapter.

Indirect source observation

The situation is subtly different for indirect (or noisy) source observations, sometimes
referred to as remote source coding and as the CEO problem in the distributed setting
(see Berger et al. (1996)).
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First of all, it is important to point out that the centralized lower bounds of Theorems
2.3.1 and 2.3.2 apply without any changes. That is, from a centralized coding perspective,
there are no information-theoretic differences between the direct and the indirect source
observation problem. This was already observed in the early work on remote source coding
(see Dobrushin and Tsybakov (1962) and Wolf and Ziv (1970)) and in more generality
by Berger (1971), p. 78–81.

Some interesting differences between the direct and the noisy indirect source coding
problem appear upon evaluation of the bounds, and hinge on the inherent balance between
the ability to estimate the source through the observation process and the encoding quality.

To start the discussion, let us consider the linear Gaussian case, but without any obser-
vation noise, i.e., the scenario illustrated in Figure 2.3, but with the observation noises set
to zero, Wm = 0, for m = 1, 2, . . . , M . For the centralized encoding, it is easy to see what
to do: as long as the matrix A has full (column) rank, i.e., rank(A) = L, one can recover
the source sequences {S�[n]} from the observations, and hence, the observation process
does not matter at all. More precisely, Corollary 2.3.3 applies without any changes. (If
the matrix A is rank-deficient, some underlying sources cannot be estimated at all, and a
simple model reduction, omitting the unobservable sources, will lead to a revised, full-rank
matrix A.)

Merely for future comparisons, let us record that this implies that for the simple case
L = 1 (and arbitrary M ≥ 1), the centralized bound says that the necessary rate is lower
bounded by the standard rate-distortion function,

Rtot (D) ≥ log
σ 2

S

D
, (2.28)

or conversely,

D(Rtot ) ≥ σ 2
S 2−Rtot . (2.29)

The next step is to explicitly include the observation noise into our considerations.
As mentioned above, the centralized lower bound of Theorem 2.3.1 still applies, and the
remaining problem is merely to evaluate it for the linear Gaussian sensor network. The
resulting behavior can be characterized as follows:

Corollary 2.3.5 (centralized lower bound, indirect noisy observation) The sum rate
Rtot required to encode an L-dimensional i.i.d. Gaussian vector source with mean zero
and covariance matrix �s = σ 2

S IL, observed through the matrix A and Gaussian observa-
tion noise with covariance matrix �w, in such a way that reconstruction incurs an average
sum distortion of at most D satisfies

Rtot ≥
L∑

�=1

log
λ�

D�

, (2.30)

where λ�, � = 1, 2, . . . , L, denote the L eigenvalues of the matrix

�sA
H
(
A�sA

H + �w

)−1
A�s, (2.31)

and

D� =
{

ν, if ν < λ�,

λ�, otherwise,
(2.32)
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where
∑L

�=1 D� = D − D0, where

D0 =
L∑

�=1

(σ 2
S − λ�). (2.33)

Specifically, for a single underlying source (L = 1) with symmetric conditionally inde-
pendent observations (A is a column vector of M ones and �w = σ 2

wIM , where IM denotes
the M-dimensional identity matrix) this can be evaluated in closed form to yield the fol-
lowing formula:

Rtot (D) = log
σ 2

S

D
+ log

Mσ 2
S

Mσ 2
S + σ 2

W − σ 2
S

D
σ 2

W

, (2.34)

or, conversely,

D(Rtot ) = σ 2
S

1 + Mσ 2
S

σ 2
W

+ σ 2
S 2−Rtot

1 + σ 2
W

Mσ 2
S

. (2.35)

To understand the difference between the expressions (2.28) and (2.34), let us consider
two different scenarios. First if the total rate Rtot increases logarithmically with the number
of sensors M , then the two expressions describe the same overall behavior, namely a
distortion that decreases like

D ∼ 1

M
(2.36)

However, if the total rate increases at a much faster pace, then the two expressions describe
very different behavior. For example, suppose that the total rate increases linearly in M ,
then, for the noiseless case, the distortion in (2.28) decreases exponentially in M , while for
the noisy case as in (2.34), it still decreases inversely proportionally. This illustrates the
balance between coding accuracy and observation quality.

We want to briefly illustrate how to evaluate the centralized bound for the more gen-
eral case where the underlying source sequences {S�[n]} are not drawn from a Gaussian
distribution. This has been studied by Eswaran (2005).

Theorem 2.3.6 (centralized lower bound, non-Gaussian sources) The sum rate Rtot re-
quired to encode an arbitrary scalar source S with probability density function pS(s) with
differential entropy h(S) > −∞, observed in additive white Gaussian noise with am = 1,
for m = 1, 2, . . . , M , satisfies

D(Rtot ) ≥
2h(S)

2πe

1 + Mσ 2
S

σ 2
W

+ 2h(E[S|U ])

2πe
2−R, (2.37)

where h(·) denotes the differential entropy function with the binary logarithm.

For a proof outline, we first note that we can consider the sum of the observations for
coding since it is a sufficient statistic for the underlying source. The proof then follows from
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the bound in (Eswaran 2005, p. 19, Theorem 2.6), which relies on the fact that for additive
noise and squared error distortion, finding the minimum mean squared error estimate at the
encoder and then relying on best mean squared error quantizer for the induced distribution
is an optimal coding strategy. The resulting distortion is then the minimum mean squared
error of the underlying source given the observations at the encoder plus a Shannon lower
bound on the distortion given a rate R for quantizing the induced source, which is the
distribution of the conditional mean of S given the observation. That is,

D(Rtot ) ≥ E

(
S − E[S|S + 1

M

∑
i

Wi]

)2

+ 2h(E[S|U ])

2πe
2−R, (2.38)

The lower bound for the first term can be found by exploiting the fact that the Wi are
jointly Gaussian. A detailed argument was given by Eswaran (2005), p. 57, Theorem A.3.

The ‘centralized’ bounds studied so far are generally loose, and therefore, we will now
discuss bounds that explicitly take into account the constraint that the encoding step be
implemented in a distributed fashion. Specifically, the Berger-Tung bound (Theorem 2.3.4)
can be straightforwardly extended to the case of noisy observations, but is again non-trivial
to evaluate, and has been shown to be loose for several interesting scenarios, including
a simple version of the linear Gaussian sensor network source coding problem illustrated
in Figure 2.3 (namely, the version addressed in Theorem 2.3.7). The bound developed
by Wagner and Anantharam (2005) also directly extends to this scenario, and in fact,
appears to be a good match, a potential that remains yet to be explored. Again, however,
it is a rather elaborate task to evaluate it in special cases.

Nevertheless, using a more direct and specialized approach (specialized to the
Gaussian case), Oohama (1997) (with subsequent extensions due to Chen et al. (2004)
and Prabhakaran et al. (2004)) found a simple and explicit bound for the case of a sin-
gle underlying source (L = 1) with conditionally independent observations (�w = σ 2

wIM ,
where IM denotes the M-dimensional identity matrix).

Theorem 2.3.7 (distributed coding, indirect noisy observation (‘CEO problem’)) The
sum rate Rtot required to encode a (one-dimensional) i.i.d. Gaussian source with mean zero
and variance σ 2

S , observed through the all-ones vector and independent Gaussian obser-
vation noises with variance σ 2

W , in such a way that reconstruction incurs an average sum
distortion of at most D satisfies, for D > σSσ 2

W/(Mσ 2
S + σ 2

W),

Rtot (D) = log
σ 2

S

D
+ M log

Mσ 2
S

Mσ 2
S + σ 2

W − σ 2
S

D
σ 2

W

. (2.39)

It is also interesting to compare this bound to the centralized coding bound (2.34). In
order to do so, let us again think of the ‘scaling-law’ case, i.e., when M becomes large.
Then, if the total rate increases faster than like log M , Equation (2.39) and the centralized
bound of Equation (2.35) both show that the distortion scaling behavior is 1/M (more
precisely, that limM→∞ D(M)/(1/M) is a non-zero, finite constant). However, if the total
rate increases like log M or slower, then the bottleneck becomes the coding performance
(rather than the estimation performance), and in this case, Equation (2.39) is significantly
larger than Equation (2.35), showing a large penalty due to distributed processing. This is
summarized in Table 2.1.
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Table 2.1 Scaling behavior of the distortion for indirect
source encoding of a single Gaussian source based on M

noiseless or noisy measurements.

Total rate Centralized encoding Distributed encoding
scaling noiseless noisy noiseless noisy

∼ log M 1/M 1/M 1/M 1/ log M

∼ M exp(−M) 1/M exp(−M) 1/M

Encoding functions of source observations

Another variation on the standard source coding problem that may be of interest in sen-
sor networks concerns the encoding of functions of source observations. Consider the
coding problem illustrated in Figure 2.4. Note that some versions of this problem corre-
spond to the noisy indirect source coding problem discussed in the previous paragraph, but
not all.

Example 2.3.8 An interesting example was presented by Körner and Marton (1979). In
Figure 2.4, suppose that M = 2. Assume that U1 and U2 are correlated binary sources, and
suppose that L = 1 and

f (U1, U2) = U1 ⊕ U2, (2.40)

that is, the goal of the decoder is to recover the (point-wise) modulo-2 sum of the two source
sequences. Clearly, one way to achieve this goal is to merely compress each of the sequences
separately. This requires a rate R1 corresponding to the entropy of the observation sequence
U1 and a rate R2 corresponding to the entropy of the observation sequence U2. The main
question is whether one can get away with a smaller rate pair (R1, R2).

A first improvement follows as a direct consequence of the seminal work of Slepian and
Wolf (1973) and gives gains whenever the two source sequences are correlated. Specifically,

�
U1

enc 1 ��
R1

�
U2

enc 2 ��
R2

.

.

.

�
UM

enc M ��
RM

dec

�
f1(U1, . . . , UM)

.

.

.

�
fL(U1, . . . , UM)

Figure 2.4 Distributed encoding of functions of the source observations.
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suppose that U1[n] is simply a Bernoulli(1/2) process, and that

U2[n] = U1[n] ⊕ E[n], (2.41)

where E[n] is a Bernoulli(p) process independent of U1[n], which makes U2[n] also a
Bernoulli(1/2) process. Hence, each source has entropy H(U1) = H(U2) = 1, and so, a rate
of R1 = R2 = 1 bits per source symbol will definitely be sufficient, but it is not necessary.
In fact, for this scenario, the work of Slepian and Wolf (1973) has shown that for any rate
pair satisfying4

R1 > H(U1|U2) = Hb(p) (2.42)

R2 > H(U2|U1) = Hb(p) (2.43)

R1 + R2 > H(U1, U2) = 1 + Hb(p), (2.44)

there exists a code that permits the decoder to recover both U1 and U2 perfectly; a con-
siderably lower total rate than for the naive scheme. It turns out, however, that even this
rate is wasteful: after all, the decoder is only interested in the modulo-2 sum U1 ⊕ U2. This
problem has been resolved by Körner and Marton (1979), who proved that the rate pair

R1 = R2 = Hb(p) (2.45)

is sufficient. To show this, they devise a random linear code construction; it turns out that
unstructured random coding of the usual kind (such as the ones discussed in Cover and
Thomas (2006), pp. 61–62) are not sufficient to prove this result. For the perspective of
this chapter, we are more interested in the converse statement, i.e., that this is the small-
est possible rate. For the case at hand, this can be answered by giving U2 for free to
encoder 1 and to the decoder. For the decoder to determine E, encoder 1 still needs to
encode at a rate of Hb(p). This provides a somewhat interesting and at first perhaps sur-
prising insight: If the two sources U1 and U2 are independent of each other, then even if the
decoder only needs the modulo-2 sum, the encoders must provide a full description of both
sources separately. No ‘rate savings’ are available. We will come back to this example in
Theorem 2.3.15.

A related but different example concerns the case where U1, . . . , UM are jointly Gaus-
sian, and the function to be recovered is merely their sum,

f (U1, . . . , UM) =
M∑

m=1

UM. (2.46)

For the special case of M = 2 and positive correlation between the sources, this prob-
lem has been shown to be equivalent to a simple modification of the CEO problem (see
Theorem 2.3.7), see the work of Wagner et al. (2005).

Specifically, it can again be shown that if the sources are independent, then no gains
are possible over separately describing each source, even though the decoder only needs
to recover their sum. We will return to this example in the context of Section 2.4.

4Hb(p) = −p log p − (1 − p) log(1 − p) denotes the binary entropy function.
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2.3.2 Distributed Channel Coding

In Section 2.3.1, we discussed known and novel bounds on the performance of source
coding techniques for sensor networks. For these to be useful, it must be possible to
reliably communicate the resulting compressed source descriptions to the fusion center.
This is the standard and well-known problem of (reliable) channel coding, leading to
the information-theoretic notion of capacity. In this section, we discuss known and novel
bounding techniques on the capacity of such noisy communication networks.

We will proceed by analogy to Section 2.3.1. That is, we will briefly discuss the different
techniques, and then apply them to the considered linear Gaussian sensor network example.
While it is well known that exact capacity results are rare, recent work has uncovered
several instances where a more or less precise result concerning the scaling behavior of
capacity, i.e., its fundamental dependence on the number of nodes, can be characterized.
This development has been spearheaded by the work of Gupta and Kumar (2000) for
the case of ad-hoc wireless networks. As we will see in more detail below, the standard
ad-hoc network setup is not always meaningful for sensor networks, due in part to the
fact that the information at the different terminals is typically not independent in sensor
networks.

For the type of sensor network studied in this chapter, the goal is generally to read out
the information at some collection point. Therefore, we will concentrate on the so-called
multiple access channel (MAC), though most of the techniques apply more generally.

Multiple access with independent messages

In the information theoretic literature, this is considered the canonical case of multiple
access: Consider a set of M encoders or channel input terminals. We will assume that
each encoder has a long bit stream to send, appearing at Rm bits per channel use, for
m = 1, 2, . . . , M . As in Figure 2.5, when necessary, we will denote these bit streams as
Vm, for m = 1, 2, . . . , M . The key is that the bit streams observed by different encoders
are independent of one another. Each encoder uses only its own bits in order to pro-
duce a suitable channel input signal. We assume that the channel is used in discrete time
(i.e., that the total channel bandwidth is limited). Hence, there will be M channel input
sequences, denoted by {Xm[i]}i∈Z , for m = 1, 2, . . . , M , and J corresponding channel out-
put sequences, denoted by {Yj [i]}i∈Z , for j = 1, 2, . . . , J . The decoder observes all channel
outputs and needs to recover the original bit streams with an error probability that goes to
zero as the coding block length is increased.

For this problem, a meaningful notion of capacity can be defined. More precisely,
the capacity region is the set of all rate vector (R1, . . . , RM) for which this error proba-
bility requirement can be satisfied. As discussed in Section 2.2, there is also typically a
cost constraint on the input sequences, i.e., not all possible input sequences are allowed.
For the purpose of our discussion, this cost constraint takes the shape of an expected
value, characterized by Pm, for m = 1, 2, . . . , M , which may be thought of as an aver-
age power constraint. This leads to a vector of simultaneously sustainable rates and costs
(R1, R2, . . . , RM, P1, P2, . . . , PM). For a fixed cost vector (P1, P2, . . . , PM), we will denote
the corresponding capacity region by

C(P1, P2, . . . , PM). (2.47)
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Figure 2.5 The (distributed) channel coding problem associated with the linear Gaussian
sensor network considered in this chapter and illustrated in Figure 2.2. This problem is
often referred to as the multiple access channel, here with generally limited cooperation
between the nodes and some forms of feedback.

For the standard capacity problem, this question has been resolved by Ahlswede (1971)
and Liao (1972) in the shape of the following theorem.

Theorem 2.3.9 The capacity region of the multiple access channel with independent mes-
sages and without feedback and encoder cooperation is given by the convex closure of the
union over all product distributions

p(x1, x2, . . . , xM) =
M∏

m=1

pm(xm) (2.48)

of the sets of rate vectors

{(R1, R2, . . . , RM) : RS ≤ I (XS;Y |XSc ), for all S ⊆ {1, 2, . . . , M}}. (2.49)

Multiple access with independent messages and feedback: cut-set bounds

Let us now generalize the previous considerations slightly. Specifically, we want to allow
for feedback, as illustrated by the dashed arrows from the decoder to all of the encoders
in Figure 2.5. Feedback has long been known to increase the capacity of channels with
memory (the roots of this insight go back to Shannon (1956)). It also increases the capacity
region of general networks, even of memoryless ones. This was first observed in Gaarder
and Wolf (1975). The general capacity of the multiple-access channel with feedback is
unknown to date. Instead, we discuss two different upper bounding techniques: In this
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paragraph, we discuss a well-known cut-set approach. In the next paragraph, we discuss a
somewhat less well-known dependence-balance approach.

The heart of the cut-set approach is as follows: Any partial sum of the rates must satisfy∑
m∈S

Rm = H(VS) = H(VS|VSc ) (2.50)

However, as long as the following Markov chain holds:

(VS, Y ) ←→ XS[i] ←→ Yi (2.51)

this implies that (Cover and Thomas 2006, Thm.15.10.1)∑
m∈S

Rm ≤ I (XS;YSc |XSc ). (2.52)

The important observation is that even when feedback is available, this Markov chain
holds.5 Since any code must simultaneously satisfy all such bounds, one obtains the fol-
lowing theorem.

Theorem 2.3.10 (max-min cut-set bound, Cover and Thomas (2006)) The capacity re-
gion is contained within the convex closure of the union over all distributions

p(x1, x2, . . . , xM) (2.53)

of the sets of rate vectors

{(R1, R2, . . . , RM) : RS ≤ I (XS;YSc |XSc ), for all S ⊆ {1, 2, . . . , M}}. (2.54)

It is important to observe that in spite of the apparent similarity to Theorem 2.3.9,
this theorem describes a fundamentally different behavior. Mathematically, this is reflected
by the fact that in Theorem 2.3.10, the maximization is performed over all possible joint
distributions p(x1, . . . , xM) whereas in Theorem 2.3.9, it is only over product distributions.
For the linear Gaussian sensor network example, let us first consider the case M = 2. Then,
Theorem 2.3.9 can be written as

R1 ≤ log

(
1 + P1

σ 2
Z

)
(2.55)

R2 ≤ log

(
1 + P2

σ 2
Z

)
(2.56)

R1 + R2 ≤ log

(
1 + P1 + P2

σ 2
Z

)
(2.57)

5Notice, however, that the Markov chain does not hold any longer if the underlying messages V1, V2, . . . , VM

are allowed to be dependent. We discuss this issue in the sequel.
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Figure 2.6 Capacity region and cut-set bounds for the Gaussian two-user MAC with
P1 = P2 = 10 and unit noise variance. Rates are in bits.

By contrast, Theorem 2.3.10 can be expressed as the union over all ρ of the regions

R1 ≤ log

(
1 + P1(1 − ρ2)

σ 2
Z

)
(2.58)

R2 ≤ log

(
1 + P2(1 − ρ2)

σ 2
Z

)
(2.59)

R1 + R2 ≤ log

(
1 + P1 + P2 + 2ρ

√
P1P2

σ 2
Z

)
. (2.60)

This is illustrated in Figure 2.6 by the region labeled ‘Max-Min.’ It was shown by Ozarow
(1984) that the max-min cut-set bound is not only an outer bound; it is the actual feedback
capacity region. Hence, in the (Gaussian) two-user case, the bound is tight. This is not true
for more than two users. We briefly discuss this in the next paragraph. Finally, the region
labeled ‘Min-Max’ is a weaker but more general outer bound, given in Theorem 2.3.12.

Multiple access with independent messages and feedback: dependence-balance
bounds

The arguments discussed in the previous paragraph for the special case of the multiple-
access channel have illustrated a special property: If channel inputs can somehow be made
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dependent, then a better performance can be achieved in general. There are of course
many different ways in which such dependence can be attained. One way of obtaining
a bound out of this intuition was presented by Hekstra and Willems (1989). This bound
crucially relies on the fact that initially, the source information at the nodes is independent,
and that dependence must be attained via a communication channel. This bound appears
to be particularly useful for two-way channels and for scenarios that involve feedback
(see Gastpar and Kramer (2006a)).

The following bound was originally developed for the two-way channel and for the
two-user multiple-access channel by Hekstra and Willems (1989); the current shape (and
extension to more than two users) was presented by Kramer and Gastpar (2006).

Theorem 2.3.11 (dependence-balance bound) The capacity region is contained within the
(convex closure of the) union over all distributions

p(t, x1, x2, . . . , xM)p(y|x1, x2, . . . , xM) (2.61)

that satisfy the conditions

I (X1, . . . , XM ;Y |T ) ≤ 1

K − 1

K∑
k=1

I (XW c
k
;Y |XWk

, T ) (2.62)

for any partition {Wk}Kk=1 of the set {1, 2, . . . , M} into K subsets where K ≥ 2, and where
Wc denotes the complement of the set W in the set {1, 2, . . . , M}, of the sets of rate vectors

{(R1, R2, . . . , RM) : RS ≤ I (XS;YSc |XSc ), for all S}. (2.63)

For the two-way channel (and the two-user MAC), this theorem was first established
by Hekstra and Willems (1989), where its centerpiece, Equation (2.62), was referred to
as the dependence-balance condition. The evaluation of the theorem for concrete cases
is complicated by the presence of the auxiliary random variable T . Specifically, while
omitting some of the subsets Sm from Equation (2.62) yields a valid outer bound to the
capacity region, one must maximize the expressions in the theorem over all choices of
the auxiliary T . This problem can be illustrated by the aid of the linear Gaussian scenario
considered in this chapter. To evaluate Theorem 2.3.10 for this case, one can start with an
arbitrary p(x1, x2, . . . , xM) and then argue that switching to a Gaussian distribution with
the same second-order statistics cannot decrease any of the bounds in Equation (2.54).
This argument cannot be used in conjunction with Theorem 2.3.11 since switching to
Gaussian increases both sides in the dependence-balance condition (Eq. 2.62). Instead, a
more elaborate argument is needed. One such argument is given by Kramer and Gastpar
(2006), and another by Gastpar and Kramer (2006b). For the two-user case illustrated in
Figure 2.6, the dependence-balance bound can be shown to coincide with the max-min
cut-set bound. However, for M users, it can be shown that the cut-set bound and the
dependence-balance bound lead to different scaling behaviors, and that the cut-set bound
is loose.

Multiple access with dependent messages

For sensor networks, it may very well be the case that the messages at different nodes are not
independent of each other (since they are typically related to one and the same underlying



2.3. DIGITAL ARCHITECTURES 29

phenomenon), or that the transmitting terminals have some form of cooperation available.
The case of dependent messages has been studied by Cover et al. (1980), though Dueck
(1981) has shown that these results are not entirely general. Some extensions were given
by Ahlswede and Han (1983). No conclusive or general capacity results are available. It
is important to note that the max-min cut-set bound given in Theorem 2.3.10 no longer
applies: the Markov chain condition of Equation (2.51) cannot be established.

More specifically, and in line with the distributed source models that we have discussed
in Section 2.3.1, we can consider the situation of a discrete memoryless distributed source,
that is, a sequence of independent and identically distributed discrete random vectors

{(V1[i], V2[i], . . . , VM [i])}i≥0, (2.64)

distributed according to a fixed and known distribution p(v1, v2, . . . , vM). A natural ques-
tion is: when is it feasible to communicate these sources across the given multiple-access
channel? A generally non-computable (‘infinite-letter’) answer to this question was given
by Cover et al. (1980). However, the focus of this chapter is on insightful and sufficiently
simple performance upper bounds. By analogy to the discussion in Section 2.3.1, the sim-
plest upper bounds are again the one for ‘centralized’ coding, for which the answers are well
known. To see what we mean by this, consider Figure 2.5: The sum of all the individual
rates, Rtot = ∑M

m=1 Rm, cannot be larger than the capacity of the point-to-point (MIMO)
channel with input vector (X1, X2, . . . , XM)T and output vector (Y1, Y2, . . . , YJ )T . This,
in turn, can be considered a ‘centralized coding’ upper bound: it corresponds to merging
all the M encoders into a single ‘superencoder’ that has simultaneous access to all M

messages, V1, V2, . . . , VM . It can also be seen as a cut-set argument: We cut the network
into two parts, one comprised of the nodes 1, 2, . . . , M , the other comprised of the base
station.

More generally, one can consider arbitrary networks, and partition the nodes into two
disjoint sets, S and Sc.

Theorem 2.3.12 (min-max cut-set bound) If it is feasible to communicate the sources
(V1, V2, . . . , VM) across an M-user multiple access channel, then we must have

H(VS) ≤ CS for all S ⊆ {1, 2, . . . , M}, (2.65)

where

CS
def= max I (XS;YS c |XS c ), (2.66)

where the maximum is over all joint distributions p(xS,S c ) that satisfy the cost constraints
P1, . . . , PM .

In spite of its apparent coarseness, this bound turns out to be tight in some non-trivial
cases, including, for example, some Rayleigh-fading AWGN relay channels, see Kramer
et al. (2005). Generally, however, the bound must be expected to be loose. This is illustrated
for the Gaussian MAC (with M = 2 and J = 1) and independent sources V1 and V2 (of
entropy R1 and R2, respectively) in Figure 2.6 by the region labeled ‘Min-Max’.

We can evaluate Theorem 2.3.12 for the linear Gaussian case. The solution to this
problem is well known (see e.g. Telatar (1995)), as follows.
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Corollary 2.3.13 For the Gaussian multiple access channel with J receive antennas, char-
acterized by a matrix B ∈ CJ×M of rank J̃ with singular values βn, the maximum joint
source entropy that can be supported satisfies

H({Vm}Mm=1) ≤
J̃∑

n=1

(
log(β2

nγ )
)+

, (2.67)

where γ is chosen such that

J̃∑
n=1

(
γ − 1

β2
n

)+
= Ptot . (2.68)

To understand the difference between Theorem 2.3.10 and Theorem 2.3.12, it suffices
to consider the scenario where the messages at all terminals are identical. Then, as a matter
of fact, the sum rate is exactly equal to the upper bound given by Theorem 2.3.12, which is
strictly larger than the convex closure of the union taken in Theorem 2.3.10. Specifically,
for the two-user Gaussian MAC with independent sources (i.e., R1 = H(V1), R2 = H(V2)

and R1 + R2 = H(V1, V2)), Theorem 2.3.12 yields the following three bounds:

R1 ≤ log

(
1 + P1

σ 2
Z

)
(2.69)

R2 ≤ log

(
1 + P2

σ 2
Z

)
(2.70)

R1 + R2 ≤ log

(
1 + P1 + P2 + 2

√
P1P2

σ 2
Z

)
. (2.71)

This is illustrated in Figure 2.6.
For certain cases, better bounds have been developed by Kang and Ulukus (2006).

Special cases

For a few special cases of interest, all of the above notions of capacity (with feedback, with
potentially partially cooperating encoders, with dependent messages) can be determined
exactly, rather than merely bounded.

Fast fading with uniform phases known only at the decoder. As a first example of a
special case, consider the linear Gaussian situation illustrated in Figure 2.5. To capture
the crux of the argument, it suffices to consider J = 1. However, contrary to our earlier
considerations, we now assume that B is randomly selected, independently for each time
unit i. Hence, we can think of a sequence B[i], and we assume that B[i] is known only
to the decoder, i.e., the standard fast fading model. To deal with this situation, one can
introduce an augmented channel output, given by the pair (Y [i], B[i]), and apply all the
above theorems by substituting this pair for the channel output Y [i]. It is then easy to
calculate that the distribution that maximizes the bounds in Theorem 2.3.12 is simply to
make X1, X2, . . . , XM independent Gaussian random variables. It is immediately clear that
the corresponding rates are achievable, even without exploiting the feedback, any other
form of cooperation, or the dependence of the underlying messages, thus establishing a
capacity result.
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Received-power constraints. As another variation on the problem of multiple access,
suppose that instead of having separate power constraints for each user, there is one power
constraint on the channel output signal. Specifically, we require that the codebooks be
designed in such a way as to guarantee that

1

n

n∑
i=1

E
[|Y [i]|2] ≤ Q. (2.72)

For this problem, it can again be shown that independently chosen codebooks maximize
the bounds in Theorem 2.3.12, directly implying a capacity result. A detailed study of this
was given by Gastpar (2007a).

2.3.3 End-to-end Performance of Digital Architectures

In this section, we briefly discuss the overall performance that can be attained by a ‘dig-
ital architecture’, by which we mean a scheme in which the source observations are
first compressed into bit sequences (or discrete messages), and these messages are then
communicated across the noisy channel network in a reliable fashion. This performance
can be bounded by combining the arguments for distributed source coding discussed in
Section 2.3.1 with the bounds for distributed channel coding considered in Section 2.3.2.

Let us first briefly discuss the scenario of a simple point-to-point communication prob-
lem (such as, for example, the setting of Figure 2.2 with L = M = J = 1). This problem
is well understood to date (at least as long as all involved random processes are station-
ary and ergodic). Specifically, for this case, the rate-distortion region defined in Equation
(2.16) simply becomes the standard rate-distortion function, often denoted by R(D) (see
e.g. Berger (1971)). Similarly, the capacity-cost region defined in Equation (2.47) simply
becomes the standard capacity-cost function (or merely capacity), often denoted by C(P )

(see e.g. Cover and Thomas (2006, p. 263), for the Gaussian case or Csiszár and Körner
(1981, p. 108), for the general discrete case).

For such a point-to-point communication problem, a digital architecture can attain any
cost-distortion trade-off (P, D) that satisfies6

R(D) < C. (2.73)

This is achievable simply by first encoding the source using R(D) bits. Then, since the
channel capacity is larger than R(D), these bits can indeed be communicated to the desti-
nation.

In a sense more pertinent to the main points discussed in this chapter is the fact that
there is no coding scheme whatsoever (not necessarily digital) that attains a cost-distortion
trade-off (P, D) for which

R(D) > C. (2.74)

This fact is often referred to as the source/channel separation theorem. We discuss this in
the context of general bounds below in Section 2.5.

6The case R(D) = C is attainable in some cases, but not in all (see e.g. Gastpar et al. (2003) for a more
detailed discussion).
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For networks, the analogous question is phrased in terms of the cost-distortion vectors
(P1, . . . , PM, D1, . . . , DL). Specifically, using the rate-distortion region defined in Equation
(2.16) and the capacity-cost region defined in Equation (2.47), one can establish that a cost-
distortion vector (P1, . . . , PM, D1, . . . , DL) can be attained using a digital communication
strategy if and only if

R ∩ C �= ∅. (2.75)

By contrast to the point-to-point setting, this is a necessary condition only for digital
schemes; more general schemes may attain better cost-distortion trade-offs. We discuss this
in detail in Sections 2.4 and 2.5.

Again, we want to illustrate this by the aid of the linear Gaussian example.

Example 2.3.14 Consider the linear Gaussian example shown in Figure 2.2, and assume
that L = J = 1 and that A and B are merely vectors of all ones, i.e., A = BT = (1, 1, . . . ,

1). As we have seen in Theorem 2.3.7, for this simple case, we can express the rate of the
source code (in order to attain a mean-square distortion level of D) as

Rtot (D) = log
σ 2

S

D
+ M log

Mσ 2
S

Mσ 2
S + σ 2

W − σ 2
S

D
σ 2

W

. (2.76)

Similarly, let us consider the special case J = 1, and where B is simply a vector of all ones.
Then, we can evaluate Corollary 2.3.13 to yield

C(Ptot ) ≤ log

(
1 + MPtot

σ 2
Z

)
. (2.77)

Combining these two formulas, we conclude that the power-distortion pairs (Ptot , D) attain-
able by any digital architecture must satisfy the relationship

σ 2
S

D
+
 Mσ 2

S

Mσ 2
S + σ 2

W − σ 2
S

D
σ 2

W

M

≤ 1 + MPtot

σ 2
Z

. (2.78)

This implies the following lower bound on the distortion that can be attained with total
power Ptot :

D ≥ σ 2
S σ 2

W

σ 2
S log

(
1 + MPtot

σ 2
Z

)
+ σ 2

W

(2.79)

As a second example, let us consider the simple computation problem discussed earlier.

Example 2.3.15 (distributed computation over a MAC) As a second (toy) example, let
us reconsider Example 2.3.8, i.e., the case where a function of the source observations
needs to be encoded. That is, the problem is now to convey the sum across a multiple access
channel. Clearly, if the capacity region of that MAC includes the rate point

(R1 = Hb(p), R2 = Hb(p)), (2.80)

then it is feasible to reliably communicate the sum via a digital strategy, and otherwise, it is
not. We will discuss this example again from a slightly different perspective in Section 2.4
(Example 2.4.3).
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2.4 The Price of Digital Architectures

There are many different reasons why digital architectures may be desirable, including
modularity of system design and some degree of robustness. However, in terms of pure
communication quality (which we have defined in Section 2.2 in terms of the trade-off
between communication cost and benefit/distortion), a digital architecture generally comes
at a penalty, which is perhaps not counterintuitive.

Shannon’s so-called source/channel separation theorem comes as a miracle in this uni-
verse, proving that this penalty vanishes for the simple (stationary, ergodic) point-to-point
communication link. In other words, a cost-distortion vector (P, D) is achievable if and
only if

R(D) ≤ C(P ). (2.81)

The proof that no coding strategy can perform better only requires the data processing
inequality (see e.g. Cover and Thomas (2006)). Specifically, one proceeds as follows. For
any encoder,

I (Sn; Ŝn) ≤ I (Xn;Yn). (2.82)

But then, the minimum of the left-hand side is the rate-distortion function, and the maximum
of the right-hand side the capacity-cost function, establishing that R(D) ≤ C(P ). It should
also be pointed out that if the assumptions of stationarity and ergodicity are dropped, this
is no longer true. An interesting illustration of this was given by Vembu et al. (1995).

In this section, we illustrate that in general networks, there is a strict performance
penalty for digital communication architectures. In Section 2.3.3, we expressed the best
possible performance of a digital architecture by equating the rate (region) for the source
coding to the capacity (region) of the channel. More formally, a digital architecture can
attain any performance characterized by a relationship of the following kind:

R(D) ∩ C(P ) �= ∅, (2.83)

where R is the rate region required for the source coding step (to satisfy distortion con-
straints D), and C is the capacity region of the channel network (for given resource
constraints P ). However, it has long been known that Equation (2.83) is not a neces-
sary condition. In other words, even if the intersection of the rate-distortion region and the
capacity region is empty, there may exist a code that achieves the prescribed distortion lev-
els D at a cost P . However, that code is not a digital code – that is, it cannot be understood
in terms of source compression followed by reliable communication across noisy channels.
Rather, it requires joint source-channel coding.

Example 2.4.1 (Cover et al. (1980)) A classical example illustrating the fact that source/
channel separation does not hold for networks is the following: The channel is the binary adder
multiple access channel, taking two binary {0, 1} inputs and outputting their sum {0, 1, 2}.
The capacity region C of this channel has the pentagonal shape given in Figure 2.7, see Cover
and Thomas (2006, Figure 15.13), for more details. Now suppose that the two transmitting
terminals each observe a binary sequence, call them Sn

1 and Sn
2 . The two sequences are

correlated with each other such that for each time instant, the events (S1, S2) = (0, 0), (0, 1),
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Figure 2.7 Capacity region C and rate-distortion region R do not intersect in this example.

and (1, 1) are all equally likely, and (1, 0) does not occur. Clearly, at least H(S1, S2) =
log 3 ≈ 1.58 bits per source sample are required. The full Slepian-Wolf rate region R is also
given in Figure 2.7; the point labeled x is log 3 − 2

3 . The two regions do not intersect, and
hence, one is tempted to guess that these two sources cannot be transmitted across this MAC.
However, this conclusion is wrong: While there is no ‘digital’ architecture that achieves this,
there is a simple ‘analog’ strategy: pure uncoded transmission will always permit recoverery
of both source sequences without error, due to the fact that the dependence structure of the
sources is perfectly matched to the channel. This illustrates that no separation theorem applies
to general networks.

Perhaps a more relevant and slightly less contrived example of the price of digital
communication in networks can be given by the aid of the linear Gaussian sensor network
that was studied throughout this chapter.

Example 2.4.2 ( Gastpar and Vetterli (2002, 2003, 2005)) To illustrate the price of dig-
ital architectures by the aid of the linear Gaussian example shown in Figure 2.2, let us
assume that L = J = 1 and that A and B are merely vectors of all ones, i.e., A = BT =
(1, 1, . . . , 1). Suppose that the ‘code’ used by the sensors is given by

Xm[i] =
√

Pm

σ 2
S + σ 2

W

Um[i], (2.84)

i.e., the sensor instantaneously (in each time unit i) scale their observation in such a way as
to meet their power constraint, but otherwise do not apply any further coding. It is easy to
see that the optimum decoding rule is also instantaneous. More precisely, it is simply given
by the conditional mean,

Ŝ[i] = E [S[i]|Y [i]] , (2.85)

which can be easily evaluated for the case where {S[i]}i≥0 is a sequence of i.i.d. Gaussian
random variables of mean zero and variance σ 2

S . By noting that the received signal Y [i] is
given by

Y [i] = Z[i] +
M∑

m=1

Xm[i] = Z[i] +
√

MPtot

(σ 2
S + σ 2

W)
S[i] +

M∑
m=1

√
Ptot

M(σ 2
S + σ 2

W)
Wm[i],



2.4. THE PRICE OF DIGITAL ARCHITECTURES 35

we find that

Ŝ[i] = MPtotσ
4
S /(σ 2

S + σ 2
W)

σ 2
Z + MPtotσ

2
S /(σ 2

S + σ 2
W) + Ptotσ

2
W/(σ 2

S + σ 2
W)

Y [i]. (2.86)

This lets us determine the resulting distortion as

D = σ 2
S σ 2

W

Mσ 2
S + σ 2

W

1 + M(σ 2
S σ 2

Z/σ 2
W)

Mσ 2
S +σ 2

W

σ 2
S +σ 2

W

Ptot (M) + σ 2
Z

 . (2.87)

This can be proved to be the optimal behavior, see Gastpar (2007b).
The most interesting aspect of this insight is not the formula given in Equation (2.87), but

its comparison with Equation (2.79): In the former, the distortion scales like 1/M , whereas
in the latter, it scales like 1/ log M . Hence, for this simple example, the digital architecture
not only performs suboptimally, it entails an unbounded penalty, exponential in the number
of nodes M .

It may be tempting to guess at this point that it is the dependence of the source obser-
vations that is responsible for the shortcoming of the digital communication paradigm.
However, this argument is not sufficiently precise to capture the gist of the story. Interest-
ingly, the distortion criteria play an equally important (or perhaps dual) role. We illustrate
this by way of the following example.

Example 2.4.3 (Gastpar (2002)) Let us reconsider the setup of Examples 2.3.8 and 2.3.15.
However, this time, rather than merely specifying the capacity region of the multiple access
channel (as in Example 2.3.15), we define the precise structure. To first make a simple point,
consider a discrete memoryless multiple access channel with binary inputs X1 and X2 and
a binary output Y given by

Y = X1 ⊕ X2, (2.88)

where ⊕ denotes modulo-2 addition. It is immediately clear that if we get to use the channel
once per source symbol, then we can always attain our goal: We simply map each source
symbol separately onto a channel input, and the channel computes the modulo-2 sum for us.
Can we also always attain this via a digital communication strategy? The best such strategy
will use the code discussed in Example 2.3.8, and it will work whenever the resulting source
coding rate point will come to lie in the capacity region of the channel. It is easy to verify
that for the considered MAC, the capacity region satisfies

R1 + R2 ≤ 1, (2.89)

since the channel output is binary. Hence, the digital strategy will work if and only if
2Hb(p) ≤ 1, or p < 0.11 (or equivalently, p > 0.89). That is, there is a price of separation.
This example was considerably generalized by Nazer and Gastpar (2005).

It is important at this point to emphasize that there are networks for which digital com-
munication does not incur a penalty. That is, there are also classes of networks where a
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separation theorem of the shape of Equation (2.83) can be given, including the transmission
of independent sources with respect to independent fidelity criteria across any multiple
access channel, see e.g. Gastpar (2002), and the error-free transmission of discrete corre-
lated sources across separate (parallel) channels, see Barros and Servetto (2006); Xiao and
Luo (2005). We will discuss this in somewhat more detail in the next section.

2.5 Bounds on General Architectures

In the previous section, we showed that there can be an arbitrarily high price for digital
architectures. In order to get a better understanding and assessment of this penalty, we need
fundamental information-theoretic bounds on the performance for general architectures.
There are only very few tools known today that permit to derive such bounds, which is
reflected by the length of the present section. One way of providing such bounds is along
the lines of cut-set (i.e., ‘centralized coding’) arguments. We will again concentrate on the
multiple-access topology. The simplest cut-set bound takes the following shape:

Theorem 2.5.1 (cut-set bound) Any achievable cost-distortion vector (P1, P2, . . . , PM,

D1, D2, . . . , DL) must satisfy, for all subsets S ⊆ {1, 2, . . . , M},
RS ≤ CS. (2.90)

where RS is defined in Equation (2.21) and CS is defined in Equation (2.66).

To prove this theorem, it suffices to merge, for each subset S, all encoders with indices
in the set S into one encoder, and to provide the observation streams with indices outside
the set S directly to the fusion center. The resulting communication system is a point-to-
point system with side information at the decoder, for which the optimum performance is
characterized precisely by the condition RS ≤ CS (Gastpar 2002, Thm.1.10). In line with
the general structure of this chapter, we again want to illustrate this bound for the special
case of the linear Gaussian sensor network example. For a derivation, see Gastpar and
Vetterli (2005).

Theorem 2.5.2 For large enough total sensor power Ptot , the distortion that can be achieved
in the Gaussian sensor network cannot be smaller than

D ≥
L∑

�=1

σ 2
S σ 2

W

α2
�σ

2
S + σ 2

W

+ c1

 1

c2 + Ptot
KJ̃σ 2

Z

G(β)

KJ̃/L

(2.91)

where α1, α2, . . . , αL are the singular values of A, β1, β2, . . . , βJ̃ are the non-zero singular
values of B, σ 2

S is the variance of the underlying sources, σ 2
W is the variance of the observa-

tion noises, σ 2
Z is the variance of the noises in the communication channel, Ptot is the total

sensor transmit power for the K channel uses, J̃ is the rank of the matrix B, and

c1 = 2
1
L

∑L
�=1 log

α2
�
σ4
S

α2
�
σ2
S
+σ2

W , (2.92)

c2 = G(β)/H(β), (2.93)
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where the harmonic mean of the squares of the non-zero singular values of B is
denoted by

H(β) =
 1

J̃

J̃∑
n=1

1

β2
n

−1

, (2.94)

and their geometric mean by

G(β) = J̃

√√√√ J̃∏
n=1

β2
n. (2.95)

This theorem can be used to establish a number of scaling-law separation theorems,
i.e., sensor network situations for which a digital architecture, while not provably optimal,
attains the optimal performance scaling-law behavior as a function of the number of sensors.
Preliminary results can be found in the work of Gastpar et al. (2006).

Theorem 2.5.1 can be tightened slightly for several special cases. One interesting bound
exploits the concept of maximal correlation, which we introduce here along the lines of the
work of Witsenhausen (1975). Consider two random variables U1 and U2, with joint distri-
bution p(u1, u2). Let f1(·) and g2(·) be functions satisfying E[f1(U1)] = E[g1(U2)] = 0
and E[f 2

1 (U1)] = E[g2
1(U2)] = 1. Then, the maximum correlation ρmax(U1, U2) is defined

to be

ρmax(U1, U2) = sup
f1,g1

E[f1(U1)g1(U2)]. (2.96)

Theorem 2.5.3 (Witsenhausen (1975)) For the two-user multiple-access channel, suppose
that the source observations are sequences of independent and identically distributed pairs
of random variables {(U1[n], U2[n])}n≥0. If

H(U1, U2) > max I (X1, X2;Y), (2.97)

where the maximum is over all joint distribution p(x1, x2) for which the correlation coef-
ficient is no larger than ρmax(U1, U2), then the sources cannot be transmitted across the
multiple-access channel.

As shown by Witsenhausen (1975), the bound can be extended to encompass sequences
of pairs of independent, but not necessarily identically distributed random variables. This
bound has been used by Lapidoth and Tinguely (2006) and later by Gastpar (2007b). We
discuss an application of this theorem in the next section. A related but different bound
was found by Kang and Ulukus (2006).

Comparison of the bounds for the linear Gaussian sensor network

In order to summarize the arguments discussed in this chapter, we now compare the various
bounds for the simplest case of the linear Gaussian sensor network example in its simplest
case, namely with L = J = 1.



38 INFORMATION-THEORETIC BOUNDS

We saw that a digital architecture attains a distortion that satisfies

D ≥ σ 2
S σ 2

W

σ 2
S log

(
1 + MPtot

σ 2
Z

)
+ σ 2

W

(2.98)

whereas there is a simple ‘uncoded’ strategy attaining

D = σ 2
S σ 2

W

Mσ 2
S + σ 2

W

1 + M(σ 2
S σ 2

Z/σ 2
W)

Mσ 2
S +σ 2

W

σ 2
S +σ 2

W

Ptot + σ 2
Z

 . (2.99)

Theorem 2.5.3 can be extended to show that this is the smallest possible distortion, i.e.,
that the ‘uncoded’ strategy is exactly optimal for this simple special case, see Gastpar
(2007b). The general cut-set bound given in Theorem 2.5.2 provides a slightly less tight
lower bound, as follows:

D ≥ σ 2
S σ 2

W

Mσ 2
S + σ 2

W

(
1 + M(σ 2

S σ 2
Z/σ 2

W)

MPtot + σ 2
Z

)
. (2.100)

2.6 Concluding Remarks

In this chapter, we discussed information-theoretic bounding techniques for sensor net-
work performance. We first considered ‘digital’ strategies, which are characterized by the
paradigm that each sensor transforms its observations into a bit sequence (in the best pos-
sible way), and all these bit sequences are then communicated without incurring further
errors, using sufficiently long codes. We gave an overview of existing and novel techniques
to bound the performance of any overall strategy that falls into this class. For (stationary,
ergodic) point-to-point communication, these strategies are as good as the best strategies.
This fact is known as the source/channel separation theorem. As we briefly discussed,
there is no such theorem for communication problems of the sensor network type, and the
extent of this lack is non-trivial: the performance deficiency of the best digital strategy with
respect to the best general strategy can be exponential in the number of sensor nodes.

More generally, the area of multi-terminal information theory is full of open problems.
While not all of them should be expected to be of key relevance to the sensor network
problem, some that we believe to be of interest include:

• Beyond cut-set bounds. One of the most fundamental problems concerns the deriva-
tion of performance upper bounds that do not rely on simplistic cut-set arguments,
but rather permit us to directly address the fact that coding must be distributed.
Such bounds are needed both to get a better sense of the performance of digital
schemes as well as to get better bounds for general architectures. Theorems 2.3.11
(the dependence-balance bound) and 2.5.3 (Witsenhausen’s approach) are examples
of such arguments.

• Scaling-law source/channel separation theorems. For certain sensor network topolo-
gies, while ‘digital’ schemes may not be exactly optimal, they are (almost) optimal
in the limit as the network becomes large. Preliminary results can be found in the
work of Gastpar et al. (2006).
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• Partial orderings. Perhaps a more active formulation of the previous point is the need
for partial orderings, that is, arguments that permit comparison of different sensor
network problems in terms of their potential and difficulty. One promising approach
is the graph-based perspective advocated and explored by Pradhan et al. (2004).

• Beyond digital code constructions. Finally, a problem that we omitted entirely from
this chapter is the development of actual code constructions. Based on our bounds,
we believe that this is a rich area, reaching considerably beyond the digital codes
that are presently available. In preliminary work, we have found some non-digital
code constructions for the problem of communicating functions. Details were given
by Nazer and Gastpar (2005, 2006).
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In-Network Information
Processing in Wireless Sensor
Networks

Arvind Giridhar and P. R. Kumar

3.1 Introduction

In recent years there has been a great deal of interest in wireless sensor networks. These
are formed by nodes that can sense their environment, perform some computations on
data that they have either sensed or received from other nodes, and can communicate over
the wireless medium with other nodes. Because of the underlying wireless communication
fabric, one possibility would be to view them as wireless networks with sensors at nodes
replacing files as sources of data. On the other hand, because these wireless sensor networks
are designed to output some ‘answer’, such as the mean temperature over all the sensors,
another possibility would be to view them simply as computers.

They are actually combinations of both. There are some features that distinguish wireless
sensor networks from both data communication networks as well as traditional comput-
ers. In traditional data networks, intermediate nodes do not alter the payload of packets
they are forwarding. They are only allowed to read and modify the headers for packets,
which essentially contain information such as the origin and destination of packets. In
contrast, in sensor networks, a node may create a ‘fused’ packet that contains only the
maximum temperature measurement that it has received from its neighbors and forward
that while discarding all the packets that it has received from its neighbors. Thus, the

Wireless Sensor Networks: Signal Processing and Communications Perspectives A. Swami, Q. Zhao, Y.-W. Hong and L. Tong
Ò 2007 John Wiley & Sons, Ltd
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nodes process the data in-network. So it is more appropriate to consider wireless sensor
networks as also having the functionality traditionally associated with ‘computers’ rather
than networks.

However, nodes in a wireless sensor network can only collaborate over the wireless
medium. This medium is distinguished by it being a shared medium and an unreliable
medium at that. These aspects are typically best analyzed from a communication networking
point of view.

Thus, we are motivated to investigate what sort of a theory is best developed to under-
stand how in-network processing must be performed in wireless sensor networks. This is
the motivation for this chapter. We provide an account of some results of interest in this
emerging area.

Our exposition will be in a staged manner by progressively introducing distinguishing
aspects of wireless sensor networks, and at the same time showing what sorts of theoretical
techniques are used to obtain answers to the questions that are posed. In the first model
studied, we bring in the idea of nodes possessing different portions of the information, and
exchanging messages with each other in order to compute a function of their joint data.
In the second model studied, we introduce the issue of spatial reuse in wireless networks,
the possibility of speedup of computational throughput by block computation, the idea of
geographical modeling of wireless sensor networks either as collocated networks or random
multi-hop wireless networks, and last but not least the study of classes of functions with
respect to how efficiently they can be computed. In the third model, we will bring in the
fact that the communications in a wireless network are themselves noisy, and the notion
of computing an answer that is correct with a certain guaranteed high probability. Finally,
we raise the issue of correlated information at nodes, and show how information theory
can model sophisticated modalities of computation, which, if understood, would provide
fundamental limits on what is achievable in wireless sensor networks.

Our exposition begins with some results from the field of communication complexity,
where nodes exchange bits until some given function of nodal information is resolved.
Then we turn to a theoretical framework that combines the aspects of viewing a wireless
network as a computational fabric, takes into explicit account the shared medium nature of
wireless communication, and also incorporates the lessons learnt from information theory,
such as the fact that block computation can lead to throughput efficiencies. After that we
turn to a model where communication is unreliable, but nevertheless the goal is to compute
a given function with low probability of error. Finally, we sketch an information theoretic
agenda for the problem of in-network information processing in wireless sensor networks.
A theory of in-network information processing is still very much in its infancy and much
remains to be done, as we note toward the end of the chapter.

Wireless sensor networks are intended to be deployed for several types of applications.
An example is environmental monitoring, where each node may be endowed with a tem-
perature sensor, and the goal may be to monitor temperature over the domain. Another
example may be to monitor the maximum temperature over the domain, which may, in
turn, be used to flag an alarm when it exceeds a certain critical threshold value.

An interesting feature of such wireless sensor networks is that information collected at
the nodes of the network is processed within the network itself. A distinguished node in
the sensor network may be dubbed a ‘collector node’, and it is the goal of the information
processing within the network to deliver the desired statistic, say, the mean temperature
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or the maximum temperature, to this collector node, from where this desired information
may be filtered out of the network. Thus the collector node may be regarded as an ‘output
unit’. The ‘input units’ are the measurements taken at the sensing nodes in the network.
Everything else that comes in between, that is, the entire network itself, is the informa-
tion processing system. Wireless sensor networks thus combine three aspects – sensing
by nodes, computational capabilities at nodes, and wireless information transfer between
nodes.

What distinguishes wireless sensor networks from mere ‘communication networks’ or
‘data networks’ is the feature that information can be processed at the nodes of the network.
Thus, a node may elect to add the value of the temperatures contained in two packets it
has received from two of its neighboring nodes, and pass on this sum to a third neighbor.
Or, in an alarm network, it could even elect to ignore a packet it has received because it
knows of an even higher temperature elsewhere in the network. This feature of information
processing at nodes distinguishes wireless sensor networks from traditional data networks
where nodes are only allowed to process or modify packet headers. Concerning the actual
payload of the packet. they are only allowed to forward a packet without altering its
content.

We should note that the functionality of nodes to process packets is also a subject of
much recent interest in the emerging area called network coding. For the particular problem
of multicast, network coding is in fact emerging as an attractive choice (Wu, Chou and
Kung 2005). In sensor networks the scope of what nodes are allowed is very broad, since
each node can simply be viewed as a ‘computer’ in its own right.

Another aspect of wireless sensor networks that distinguishes them is the medium that
is used for communication – wireless. The wireless medium is a shared medium, and is
further unreliable, susceptible as it is to interference and fading. These bring in several
interesting aspects related to how the wireless medium is to be exploited for information
processing.

Combining the above two characteristics, one can envision a wireless sensor network
as a distributed computational system where communication is by wireless – a sort of
‘Maxwellian computer’. This raises the issue of how such a system ought to be exploited
to deliver the functionality that is sought. That is the subject of this chapter – how should
information collected at the nodes of a wireless sensor network be processed in-network?
This is very much a topic that is still evolving and much work remains to be done.

The outline of this chapter is as follows. We begin in Section 3.2 by studying a simple
scenario where two nodes exchange ‘bits’ with the goal of computing a function whose
two arguments are separately measured at the two nodes. If the goal is to compute the
function in minimum time, it can be regarded as a problem in determining communication
complexity of distributed computation, and was introduced by Yao (1979).

Next, in Section 3.3, we turn to a model (Giridhar and Kumar 2005) that introduces four
additional distinguishing features of wireless sensor networks. One is the spatial reusability
aspect of wireless networks. That is, the communication resource – the spectrum – can
be simultaneously utilized at two distant locations in the network, for different message
transmissions. We will consider a simple geometric model where transmissions simply
create ‘interference footprints’ within which other receptions are impossible, as in Gupta
and Kumar (2000). The second aspect that is introduced in this section is that, unlike simply
considering a sensor network as only being required to perform a ‘one-shot computation’ of
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a function at just one given set of nodal measurements, we will suppose that computations
must be repeated by the network with differing sets of nodal measurements, taken, say daily.
That is, the network continues to monitor the environment every day. This continuing nature
of the problem raises the issue of whether block computation can lead to greater efficiencies,
as was pointed out and exploited by Shannon for communication systems. To put it another
way, we are motivated whether there is an extension of block communication, called, say,
‘block computation’, that can provide ‘computational throughput’ speedups, just as block
communication provides for the problem of communication. We combine both these issues
in specific geographical models of wireless sensor networks, the third aspect introduced
in this section. One specific class of model we will study is random multi-hop wireless
networks, where nodes are uniformly located in a disk, with nodes choosing a common
range sufficient for network connectivity, and communicating by multi-hop relaying of
packets. The fourth aspect introduced in this section is the study of how the wireless sensor
network can perform the computation of symmetric functions, which remain unaltered even
if the sensor measurements at the nodes are permuted, and certain subclasses of them. This
class includes many functions of interest such as ‘mean’ or ‘maximum’ alluded to above,
and indeed several statistical functions.

Finally, in Section 3.4, we turn to another class of models in which yet another new
ingredient is introduced – noisy communication (Gallager 1988; Rajagopalan and Schul-
man 1994; Schulman 1996; Kushilevitz and Mansour 1998). We will consider a broadcast
network, i.e., collocated network, and present results on two specific functions.

In Section 3.5, we conclude with some comments on the difficulties confronting us in
an information theoretic approach to in-network processing in sensor networks.

We note that the focus in this chapter is only on the communication cost of the process of
distributed computation. We will not specifically address issues related to the computational
cost.

3.2 Communication Complexity Model

Consider the following problem where there are two nodes, each having a different piece of
information, say, a sensor measurement, and they desire to compute a function that depends
on both pieces of information. Let us denote the two nodes, as is traditional, by Alice and
Bob. Alice has access to a variable x, while Bob has access to a variable y. There is a
function f , and both Alice and Bob want to determine the value of f (x, y). Alice and
Bob can communicate with each other, let us say over a link of 1 bit per time slot. The
issue we will address is the minimum time required for Alice and Bob to determine the
value of f (x, y). More formally, we seek the minimum time over all protocols, of the
maximum time to compute f (x, y) over all possible inputs (x, y). We will suppose that x

takes values in a finite set X, whose cardinality we denote by |X|. Similarly, we suppose
that y ∈ Y and f (x, y) ∈ Z. We will also use |Range(f )| to denote the cardinality of the
range, i.e., the set of values taken by f (x, y) for x ∈ X and y ∈ Y .

It should be noted that the specification of the deterministic protocol to compute f (x, y)

must include which node should transmit on each slot, as a causal function of all previous
transmissions, as well as what that node should then transmit, which can be based not only
on previous transmissions but also on its own variable.
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Let us start with the simplest protocol. Alice sends Bob the value of x, which takes
log |X| slots, and then Bob sends back Alice the value f (x, y), which takes log |Range(f )|
slots. This protocol takes a total of log |X| + log |Range(f )| slots. Similarly, log |Y | +
log |Range(f )| is also feasible, which leads to the minimum of the two aforesaid expressions
being an upper bound on computation time.

Conversely, it can be shown that log |Range(f )| is a lower bound. To see this, note
that to encode the set of possible values of f takes log |Range(f )| bits. If there were a
protocol for which the number of transmitted bits were less, then the mapping between
function values and strings of transmitted bits could not be one-to-one. Therefore, there
would have to be two inputs (x1, y1) and (x2, y2) for which the transmitted bits are exactly
the same, but yet f (x1, y1) �= f (x2, y1). Note now that either f (x1, y1) �= f (x1, y2) or
f (x1, y2) �= f (x2, y2), (for if both were equalities, one would have f (x1, y1) = f (x2, y2)).
Suppose that f (x1, y1) �= f (x1, y2). Then the protocol would transmit the same bits for
(x1, y2) as it would for either (x1, y1) or (x2, y2). But then Alice cannot resolve between
f (x1, y1) and f (x1, y2), because she sees the same set of transmitted bits from Bob in each
case and has the same input in each case as well.

A conceptually powerful representation of a protocol is as a binary tree. Each internal
node v corresponds to either Alice or Bob, and as such is assigned either a function
av : X → {0, 1}, or bv : Y → {0, 1}. Making a sequence of transmissions corresponds to
traversing down the binary tree. Each node represents the current state after all the previous
transmissions, which both nodes are aware of. At each node, Alice or Bob will transmit
depending on which function is assigned to that node, and the value of the transmission is
the function value given the particular input held by Alice or Bob. The transmitted value
then determines which of the two child nodes to pick (0 corresponds to left, 1 to right),
after which a single time step has passed and the new node state is now known.

The protocol terminates when a leaf node is reached. Each leaf node corresponds to a
particular function value (of the original function of interest). Thus, if both nodes know
the structure of the protocol tree prior to commencing transmissions, and know the node
state throughout the duration of the protocol, both will know the function value once the
leaf node is reached. Some thought will reveal that this is indeed the most general notion
of a deterministic protocol between two agents.

The communication complexity of the function in terms of the protocol tree is then the
depth of the tree, or the maximum distance of any leaf node from the root, which is also
the worst case number of time steps taken by the protocol.

One can also envision the process of computation through a matrix, as in Figure 3.1.

Figure 3.1 A protocol envisioned as a matrix.
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The values of f (x, y) are indicated. The rows correspond to the possible values of the
x variable, while the columns correspond to the possible values of the y variable. Suppose
Bob goes first, and transmits ‘right’ in the first transmission. This indicates that his input is
either y3 or y4. Suppose Alice then sends ‘bottom’, indicating that her variable is either x2,
x3, or x4. If now Bob replies with ‘right’ again, then this shows that the function value is
1. Thus the protocol breaks the matrix into sub-matrices which are ‘monochrome’, and the
communication complexity in the maximum number of transmissions until a monochrome
sub-matrix is reached.

We can show that the logarithm (to base two) of the rank of the matrix [f (x, y)] is a
lower bound, as follows. It is sufficient to note that after each transmission the maximum
rank of the resulting sub-matrices can be at most reduced by a factor of 2. Since the final
rank of the monochrome sub-matrix reached is 1, it follows that log Rank[f (x, y)] is a
lower bound on communication complexity.

Yet another technique to obtain a lower bound is to use what is called a ‘fooling set’
technique. Suppose f (x1, y1) = f (x2, y2) = · · · = f (xm, ym) but that for any (x1, y1) and
(xj , yj ) with 1 ≤ i, j ≤ m, either f (xi, yj ) �= f (xi, yi) or f (xj , yi) �= f (xi, yi). Then sim-
ilarly to the above techniques one can show that log m is a lower bound on communication
complexity.

We now provide some examples of functions and their communication complexity.

(i) Let X = Y . Consider the equality testing function:

f (x, y) = 1 if x = y,

= 0 if x �= y.

Then the fooling set method provides a lower bound of log |X|. In fact it can be
shown that its communication complexity is 1 + log |X|.

(ii) Again, suppose X = Y = {1, 2, . . . , n}, and consider the ‘x greater than y’ function:

f (x, y) = 1 if x > y,

= 0 otherwise .

Its communication complexity is 1 + log n.

(iii) Let X = Y = {1, 2, . . . , n}, and consider the averaging function whose value is equal
to the average of the two subsets x and y. Its communication complexity is O(log n).

(iv) For the same sets X and Y as above, the median of the sets x and y also has
communication complexity O(log n).

There are some features of wireless sensor networks that are not captured by the formulation
of communication complexity. For example, the notion of spatial reuse is not modeled.
Communication is also assumed to be noise-free. Also any possible correlations between
measurements at the different nodes are not exploited. A continuum version of the problem
is studied by Luo and Tsitsiklis (1994).
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3.3 Computing Functions over Wireless Networks:
Spatial Reuse and Block Computation

We now consider a model of a wireless network which incorporates the notion of spatial
reuse in communications, thus making it more relevant to wireless sensor networks. We will
also suppose computations are to be repeatedly performed with new sets of measurements.
As in the spirit of information theory we will allow for block computation to see if that
can lead to greater computational throughput.

3.3.1 Geographical Models of Wireless Communication Networks

First we begin with a geographical model of the wireless communication network. We
consider a domain, say, a disk of unit area, and suppose that there are n nodes located in
the disk. We will suppose that all nodes choose a common range r for all their transmissions.
To model the interference aspect of the wireless medium we will suppose that whenever
a node i transmits, it creates an interference footprint which is a disk of radius (1 + �)r

centered at the transmitter. For a node j to receive a transmission from node i, we will
require that its distance to node i be no more than r , while its distance to every other
concurrent transmitter is at least (1 + �)r . That is, it must be within reception range r

of its own transmitter, and outside the interference footprint of every other concurrent
transmitter. This model has been considered in Gupta and Kumar (2000) for the study of
wireless networks, and is a simplification of more general models allowing for reception
based on the magnitude of the signal-to-interference plus noise ratio (Xue and Kumar
2006). We will suppose that all transmissions have a data rate of 1 bit per second.

We will consider three models of wireless networks:

1. Collocated Networks. In these networks we will suppose that the n nodes are
arbitrarily located within the unit disk. We will also suppose that the range of each
transmission r is greater than the diameter of this disk, so that every node’s trans-
mission reaches every other node in one hop; hence the name ‘collocated network’;
see Figure 3.2. Thus there is no need for multi-hop delivery of packets. Given the
model of interference, it also follows that at any given time there can only be one
active transmitter. In this model there is therefore no exploitation of the notion of
spatial reuse.

2. Random Multi-Hop Wireless Networks. Here we will suppose that the n nodes
are randomly located, uniformly and independently in the disk of unit area; see
Figure 3.3. We will suppose that the common range of all transmissions by all
nodes is

rn = (1 + ε)

√
log n

πn
, (3.1)

for some ε > 0. The reason for this choice of range is that if the range is only

rn =
√

log n

πn
, then it turns out that as n → ∞ the probability that the network is
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Figure 3.2 A collocated wireless network.

Figure 3.3 A random multi-hop wireless network.

connected converges to 0. By ‘connected’ we refer to the random graph that is
formed by including a link between any two nodes which are at a distance no more
than rn apart. On the other hand, for any ε > 0, the range (3.1) is asymptotically
sufficient in that the probability that the random graph is connected converges to 1
as n → ∞. Another consequence of the choice of range as in Eq. (3.1) is that with
probability approaching 1 as n → ∞, it follows that every node in the graph has
�(log n) neighbors, i.e., �(log n) nodes are within range r(n). (Note that we say
that f (n) = �(g(n)) if f (n) = O(g(n)) as well as g(n) = O(f (n)).

3. Regular Networks. Consider a network where there are n nodes located at coordi-
nates (i, j) with 1 ≤ i, j ≤ √

n; see Figure 3.4. We will also suppose that the range
of all nodes is r(n) = √

2 so that every node not on the boundary has eight neighbors.
This too is a connected network, though with a bounded neighborhood, in contrast
to the random, multi-hop wireless network model above.
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Figure 3.4 A regular planar wireless network.

3.3.2 Block Computation and Computational Throughput

In contrast to the one-shot computation in Section 3.2, we will allow for block computation.
Such a strategy is motivated by information theory (Cover and Thomas 1991) where it is
critical to attaining the capacity of a channel.

Let [x1(i), x2(i), . . . , xn(i)] be the vector of measurements taken by the n nodes at
epoch i. Given a function f (·); it is desired that the nodes in the network collaborate
in computing the function f (x1(i), x2(i), . . . , xn(i)), and make it available at some given
distinguished node in the network, designated as a collector node. Instead of performing
a one-shot computation of the function value of f (x1(i), x2(i), . . . , xn(i)), we consider
the case where N sets of such measurements [x1(1), x2(1), . . . , xn(1)], [x1(2), x2(2), . . .,
xn(2)], . . . , [x1(N), x2(N), . . . , xn(N)] are available, and the network computes the N val-
ues f (x1(1), x2(1), . . . , xn(1)), f (x1(2), x2(2), . . . , xn(2)), . . . , f (x1(N), x2(N), . . . ,

xn(N)). Let us suppose that using some protocol or strategy P , this computation is con-
ducted in an amount of time TP(N). Then RP(N) := N

TP(N)
is the rate at which this

computation has been performed for this block size N . We are interested in Rmax :=
supP supN≥1 RP(N), and call this the computational throughput of the network. On occa-
sion we may refer to this as Rmax(f ), when it is desired to highlight that this is the
throughput for the particular function f of interest. To be more precise we actually need to
define a sequence of functions fn, since the domain varies as the number of nodes varies,
but we will omit this for brevity; full details can be found in Giridhar and Kumar (2005).

3.3.3 Symmetric Functions and Types

Our goal is to determine Rmax(f ) for various functions f of interest. Two functions of
particular interest are the mean,

fmean(x1, . . . , xn) = x1 + x2 + · · · + xn

n
,

and the max,
fmax(x1, x2, . . . , xn) = max

1≤i≤n
xi.
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These, together with functions such as fmedian, and fmode, defined in the obvious ways, are
of interest in several environmental monitoring applications.

One characteristic of the above four functions, and indeed many statistical functions, is
that they are symmetric functions, i.e., f (x) = f (πx) where π is any permutation applied
to x.

A key property of symmetric functions is that they are dependent only on the frequency
histogram of the measurements. Suppose that the measurements taken by the sensor nodes
are from a finite subset of D real numbers, which we will call the alphabet, as in information
theory. Then the frequency histogram of a set of measurements x = (x1, x2, . . . , xn) is
τ (x) := (τ1(x), τ2(x), . . . , τD(x)), where

τk(x) := number of xi’s in x = (x1, x2, . . . , xn) which are the k-th letter in the alphabet.

This frequency histogram τ (x) is also called the type vector in information theory. We note
that the number of possible type vectors is O(nD). Hence, a type vector can be represented
by O(log n) bits.

Since a symmetric function is dependent on x only through its type vector τ (x), the
maximally difficult symmetric function to compute is just the type vector function. A lower
bound on the computational rate at which any other symmetric function can be computed
is provided by the computational rate for the type vector function.

3.3.4 The Collocated Network

Let us consider the problem of computation for a collocated network. The first issue is
to make precise what a protocol or strategy entails. We begin by noting that a protocol
does need to specify when a particular node should or should not transmit. We will further
constrain our protocol to be one which does not result in any collisions. That is, every
transmission should be successful, which in the special case of a collocated network simply
means that at most one node should be allowed to transmit at any given time. It should
be noted that the collision-free schedule will have to be arrived at in a causal distributed
manner by the nodes, with each node determining whether it should transmit based only
on prior transmissions it has heard. The content of what it then transmits can additionally
depend on its private information. On the very first transmission, the choice of which node
transmits will have to be predetermined. Recursively at the m-th transmission, the decision
on which node will transmit is based only on previous broadcasts since that is the only
information common to all nodes, while the content of the broadcast is a function of the
previous broadcasts as well as the private information possessed by the node. We formulate
this as a definition.

Collision-free protocols

We will assume for simplicity that each transmission is binary, either 0 or 1. A collision-free
protocol (CFP) P for the collocated network consists of the following:

1. Let us denote by φm(·) the function that determines which node transmits at time
m. Each such φm is a mapping φm : {0, 1}m−1 −→ {1, 2, . . . , n}, 2 ≤ m ≤ TP, and
φ1 ∈ {1, 2, . . . , n}. The argument of φm is to be interpreted as the history of past
broadcasts that is heard by all the nodes.
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2. Let us denote by ψm the function that determines what is broadcast on the m-th
broadcast. Each such ψm is a function ψm : XN × {0, 1}m−1 −→ {0, 1}, 1 ≤ m ≤ TP.
Let Xi denote the block of N measurements [x1(1), x1(2), . . . , x1(N)] of node i.
The mth transmission Zm is (recursively) defined as follows: Z1 := ψ1(Xφ1

), Zm :=
ψm(Xi, Zm−1, . . . , Z1), for 1 < m ≤ T (P), where i = φm(Zm−1, Zm−2, . . . , Z1).

3. Finally we need to specify how the final value of the function is arrived at. This is
given by a decoding function ξ : {0, 1}TP −→ YN , such that f (X) = ξ(Z1, Z2, . . . ,

ZTP).

The functions φm(·) and ψm(·) are the analog of a codebook. They are fixed a-priori, and
are known to all nodes.

The node designated to transmit at time m is φm(Zm−1, Zm−2, . . . , Z1). Since it is
based only on the common broadcasts heard by all nodes, every node knows if it is the one
that should or should not transmit, and since only one node is designated as a transmitter,
the transmissions are collision-free. The medium access problem is thus resolved in a
distributed but collision-free fashion. Concerning the content of the transmission, it can
depend on (1) what the sensor itself ‘knows,’ which knowledge is comprised of its own
data vector, and (2) all the previous transmissions that it has heard. We note also that since
each node knows who the transmitter is, ‘packet headers’ specifying who is the transmitter
are not required.

This definition of the class of protocols generalizes the notion of communication pro-
tocols in communication complexity (Kushilevitz and Nisan 1997).

We note that, as an alternative model, one could conceivably allow for collisions.
Then, however, the issue arises of whether collisions can be discerned as such by all the
nodes. If they can indeed be discerned as collisions, then collisions also carry information,
reminiscent of classical models of the ALOHA type (Bertsekas and Gallager 1987). Since
we are considering a ‘packet capture’ model of communication, we have pursued the
alternative model of computation achieved only through collision-free packets.

3.3.5 Subclasses of Symmetric Functions: Type-sensitive
and Type-threshold

Having defined the class of allowable protocols, we now turn to the functions themselves.
Defined below are two disjoint subclasses of symmetric functions. The interest in these
two function classes arises from two facts. First, they include several functions of interest,
such as mean and max, as we will see below. In fact, they include most statistical functions
of interest. Second, it turns out that the order of the maximum rate can be characterized
uniformly over each subclass, in both collocated and random multi-hop wireless networks.
It should be noted, however, that these subclasses together do not comprise all possible
symmetric functions.

Type-sensitive functions

Consider a symmetric function f . We say that it is a type-sensitive function if there
exists some 0 < γ < 1, and an integer n′, such that for n ≥ n′, and any j ≤ n − �γ n�,
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given any subset {x1, x2, . . . , xj }, there are two subsets of values {yj+1, yj+2, . . . , yn} and
{zj+1, zj+2, . . . , zn}, such that

f (x1, . . . , xj , zj+1, . . . zn) �= f (x1, . . . , xj , yj+1, . . . yn). (3.2)

It is trivial to observe that if the above is true for j = n − �γ n�, then it also holds for all
lower values of j as well.

Essentially, this definition asserts that if a large enough fraction of the measurements
are unknown, then the function cannot really be determined. Thus these are functions that
one would intuitively expect to be difficult to determine, and in fact we will quantify this
below.

The other class of functions that we consider is the following.

Type-threshold functions

Recall that we use the notation τ (x) to denote the type vector of a measurement vector
x. Again, consider a symmetric function f . We say that f is a type-threshold function if
there exists a vector θ of D non-negative entries, which we shall call a threshold vector,
such that f (x) = f (y) whenever min(τ(x), θ) = min(τ(y), θ). Above, the min operation
applied to vectors denotes the vector of element-wise minima.

In contrast to the class of type-sensitive functions, it can be seen that the value of a
type-threshold function can be determined from a fixed number of known arguments. These
two subclasses are clearly disjoint. Indeed if f is a type-threshold function, then as n → ∞
the fraction

∑
i θi

n
→ 0. Hence it cannot be a type-sensitive function.

Now we list several examples of functions that fall within these classes.

1. The mode of a vector of measurements x is the value which occurs the most frequently
in the set of measurements. Clearly if more than half the xis are unknown, the mode
is undetermined. Hence it is a type-sensitive function.

2. The mean of the entries of a vector x is also a type-sensitive function. Even if we
require the mean to be computed to only within some finite precision, it is still a
type-sensitive function. The median and the standard deviation are also type-sensitive
functions.

3. The max function, i.e., the maximum among the entries xi’s, is also a type-threshold
function. In fact, its threshold vector is simply [1, 1, . . . , 1]. Similarly, the min func-
tion and the range function (maxi xi − mini xi) are also type-threshold functions.

4. The kth largest value among the xi’s is a type-threshold function.

5. The function that computes the mean of the k largest values of a vector is also
a type-threshold function. Its threshold vector is the vector of constant elements
[k, k, . . . , k].

6. Consider the function that determines whether there is some particular letter in the
alphabet that is indeed present in the set of measurements taken by the nodes at an
epoch. This is captured by an indicator function I (xi = α, f or some i). It is clearly a
type-threshold function,. In fact its threshold vector is simply [0, 0, . . . , 0, 1, 0 . . . 0],
where the 1 is in the position corresponding to the letter α in the alphabet.
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To see that there are nevertheless functions that do not lie in either of these classes, one
may consider the function f (x) which is 1 whenever the number of entries that are 1 in the
vector x is greater than �√n�, and 0 otherwise. No matter how large a constant we choose,
knowing a constant (i.e., independent of n) number of values cannot fix the value of the
function. Thus it cannot be a type-threshold function. It cannot also be a type-sensitive
function since there is no c < 1 such that cn > n − �√n� for arbitrarily large n.

3.3.6 Results on Maximum Throughput in Collocated Networks

Now we turn to the quantification of the difficulty in computing certain functions over
wireless sensor networks. The metric we focus on is that of ‘computational throughput’.
Our results aim at characterizing the order of growth (or reduction) of this computational
throughput. That is, we eschew pre-constants, and aim for the scaling law of the order of
growth for this metric.

In this section we will focus on collocated networks. What we provide below are sharp
characterizations, order-wise, of the maximum computational throughput for type-sensitive
functions and type-threshold functions in collocated networks.

Theorem 3.3.1 1. For the problem of computing a type-sensitive function over a collo-
cated network, the maximum computational throughput is �( 1

n
).

2. For the problem of computing a type-threshold function over a collocated network,
the maximum computational throughput is �( 1

log n
).

In order to understand the import of these results, it is worth considering an extreme case:
the data downloading problem. This is the problem of delivering all the measurements from
all the sensors to the collector node. It can be shown that the computational throughput
for this data downloading problem is in fact �( 1

n
). This sets result (1) above in context. It

shows that, at least order-wise, computing a type-sensitive function in a collocated network
is maximally difficult. Since the mean, mode and median are exemplars of this class, they
too are all seen to be maximally difficult order-wise. This result for type-sensitive functions
is clearly pessimistic. On the other hand, it is not very surprising, since the very core of
the definition of a type-sensitive function indicates that �(n) amount of data must be
communicated for each set of network-wide readings, for the function to be computable.
It should also be noted that block coding in this case does not provide any improvement
in order.

In contrast, what is surprising is that an exponential improvement is possible for type-
threshold functions. In this case, it is block coding that does the trick, since, for a one-shot
communication scenario, it is easily shown that �(n) time slots are required.

We now provide a proof of achievability of this latter result for the special case of
computing the max function f (x1, x2, . . . , xn) = max{xi : 1 ≤ i ≤ n} with an alphabet
X = {0, 1} of size two. Our proof is constructive and is based on constructing a sequence
of collision-free protocols Sl(n+1),n, for l = 1, 2, 3 . . ., which asymptotically achieve the
rate �( 1

log n
). Let us denote the block-length by N = l(n + 1). Let us denote the block of

measurements at node i by Xi . Also, recalling that the measurements, say, ‘alarm values’,
are binary 0 or 1, suppose that the number of 1s in this block Xi of measurements at node
i is Ni . It is convenient to consider the set of time instants Si := {1 ≤ j ≤ N : Xi(j) =



56 IN-NETWORK INFORMATION PROCESSING

1, Xk(j) = 0 f or all k < i}. For node 1, S1 is the set of time instants at which it attains
the max alarm value of 1. For node 2, S2 is the set of time instants at which it attains the
max alarm value of 1, but node 1 does not. For node 3, S2 is the set of time instants at
which it attains the max alarm value of 1, but nodes 1 and 2 do not, and so on. Clearly if
the union of all the Sis could be communicated to the collector node, then it would know
the set of all times at which the max alarm value was 1, and (in this binary case) the
complement of this set would be the set of times at which the max alarm value is 0.

Now we address the issue of how the nodes can individually communicate their Sis
to the collector node. The first point to note is that communication itself is particularly
easy in the collocated network since all a node needs to do is broadcast at a time at which
no other node broadcasts. Also, it should be noted that such broadcasts are heard by all
the nodes in the network. The second point to address is, how can a node i know what
Si is? The point is that the definition of Si needs knowledge of Sk for k < i. In fact, we
turn this requirement into an advantage and the basis of an algorithm: The nodes simply
broadcast their Ss in order, beginning with node 1, then node 2, then node 3, etc. Node
i can then listen to the previously broadcast S1, S2, . . . , Si−1, and determine its own Si .
Moreover, after the last node n has broadcast its Sn, all nodes, which specifically includes
the collector node, know all the Sis, and in particular

⋃
1≤i≤n Si . The Sis are disjoint, and⋃

i Si = {j : f (X1(j), X2(j), . . . , Xn(j)) = 1}. Thus the collector node obtains the max
alarm value at all time instants. Therefore, communicating the sets S1, S2, . . . , Sn to the
collector node suffices to reconstruct the max function.

Now we proceed to calculate how efficiently all this can be done. Denote by Ni := |Si |,
the number of epochs whose identity node i needs for its broadcast. Clearly Ni ≤ Ni . The
Ni’s count the number of 1s in the ith vector, in positions that are all 0s in the previous
k < i vectors. In a sense, these are the only ‘new’ 1s as far as the max function is concerned.

As outlined above, the protocol uses n broadcasts, with node i transmitting at stage
i. In the ith stage, Sj for j < i is known to all nodes, and the ith node can compute Ni .
Communicating its value takes log N bits. In addition, the list of times of these Ni entries
must also be encoded. The length of this encoding is easy to compute. Each Si is one of(

N −∑
j<i Nj

Ni

)
possibilities. Also, by this stage, Ni as well as the previous Sj s are

known to all nodes, whether for decoding or encoding. Node i can accordingly encode

the identity of the set Si in log

(
N −∑

j<i Nj

Ni

)
bits. The question of how to parse

successive broadcasts is resolved in an iterative manner as the Nis are revealed. Thus all
nodes know when to begin their own broadcasts. Similarly the collector node knows when
to begin its decoding. To determine the total computational time we simply add up all these
packet lengths. The total number of bits required is

T (P) = n log N +
∑

i

log

(
N −∑

j<i Nj

Ni

)
. (3.3)

This expression in Eq. (3.3) can in turn be bounded as follows. The quantity
∏

i ×((
N −∑

j<i Nj

Ni

))
is the multinomial coefficient

(
N

N1, N2, . . . , Nn, N ′

)
, where N ′ =

N −∑n
i Ni . Now we exploit the fact that a multinomial coefficient attains its maximum
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when all the Nis and N ′ are equal to N/(n + 1) = l. Hence,(
N

N1, N2, . . . , Nn, N ′

)
≤
(

N
N

n+1 , N
n+1 , . . . , N

n+1

)

=
∏

0≤i≤n

(
(n − i + 1)l

l

)
<

(
l(n + 1)

l

)n+1

.

Now we invoke the simple combinatorial inequality

(
n

k

)
< (ne

k
)k . This yields

((
l(n + 1)

l

))n+1

<

(
l(n + 1)e

l

)l(n+1)

= ((n + 1)e)l(n+1).

Hence the total time to communicate the block of N maxima, T (P), satisfies

T (P) < n log l(n + 1) + l(n + 1) log (n + 1)e.

Now for n > 10, n2 > e(n + 1). This shows that

Rmax = lim sup
N→∞

sup
SN,n∈CFP

N

T (P)

≥ lim sup
l→∞

l(n + 1)

T (P)
≥ 1

2 log n
.

The central importance of allowing block coding in the above encoding scheme should
be noted.

The next question that arises is whether this is indeed a sharp bound order-wise. By
using fooling-set type arguments it can be shown that it is indeed so.

Thus we conclude that the maximum computational rate for computing the max function

is �
(

1
log n

)
.

Let us denote the reciprocal of the computational rate as the computational cycle-
time. Then we see that the computation cycle-time is exponentially larger for the mean in
comparison to the max.

3.3.7 Multi-Hop Networks: The Random Planar Network

Consider now the random planar network on a unit area disk (Figure 3.3). Further suppose
that every node has the same transmission range r(n). The range r(n) essentially determines
the degree of each node. The following lemma (Gupta and Kumar 2000) shows how to so
choose r(n) so that the resulting graph G(n) is connected, and shows that the order of the
degree d(G(n)) that results is O(log n) with high probability.

Lemma 3.3.2 For random planar networks, if range r(n) ≥
√

2 log n

n
, then

lim
n→∞ Pr[G(n) is connected] = 1,
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and

lim
n→∞ Pr[d(G(n)) ≤ c log n] = 1,

for some c > 0.

In collocated networks, there did not seem to be any apparent advantage in considering
symmetric functions, since for the fairly large subclass of type-sensitive functions, the
maximum rate is of the same order as that of communicating all measurements. Although
the quantity of information, i.e., the log of the range of the function in bits, is logarithmic
in the size of the network, as opposed to linear in the case of all measurements, this could
not be exploited.

However, in a multi-hop network such as the random planar network, the possibility
of spatial reuse in transmitting, and of performing in-network aggregation in relaying data,
means that a significant compression can be achieved for all symmetric functions.

The key idea is that in the random planar network, the histogram or type can be
communicated to the collector at a rate O( 1

nr2(n)
), which specializes to O( 1

log n
) for a

suitable chosen r(n). This is exponentially better that what is possible in the collocated
network case, as well as exponentially better than the achievable rate of communicating all
the data in the random network case. This further means that all symmetric functions can
be computed at least such a rate, because symmetric functions are completely determined
by knowledge of the frequency histogram.

The protocol to achieve such a rate can be constructed by dividing the unit disk into
appropriate size cells, and forming on the basis of this division a tree rooted at the collector
node; see Figure 3.5. Together with an appropriately defined schedule and use of pipelining,
it can be shown that such a rate can be achieved. A general version of such a protocol can
be applied to a more general class of graphs and functions. This is described in (Giridhar
and Kumar 2005).

For type-sensitive functions, the above rate is order optimal. The optimality proof uses
the result in the previous section for collocated networks.

Figure 3.5 Forming a tree rooted at the collector.



3.3. COMPUTING FUNCTIONS OVER WIRELESS NETWORKS 59

For type-threshold functions, similar upper and lower bounds on order can be derived,
by suitably extending the results of the previous section, and by constructing a tree-based
achievability protocol. The results are summarized in Theorem 3.3.3.

Theorem 3.3.3 Consider a wireless network with n nodes uniformly and independently
located in a unit area disk on the plane. Suppose that all nodes employ a common range
r(n) which is chosen to be large enough so that the network is connected.

1. Suppose f (·) is a type-sensitive function. Then there exist constants c2 > c1 > 0, such
that

lim
n→∞ Pr

[
Rmax(f ) ≥ j

nr2(n)

]
= 1 if j ≤ c1

0 if j ≥ c2
. (3.4)

Then there exist constants c4 > c3 > 0, such that

lim
n→∞ Pr

[
Rmax ≥ j

log(nr2(n)

]
= 1 if j ≤ c3

0 if j ≥ c4
. (3.5)

By choosing r(n) =
√

2 log n

n
, the results specialize to �( 1

log n
) for type-sensitive func-

tions and �( 1
log log n

) for type-threshold functions, respectively. The proofs can be found
in Giridhar and Kumar (2005).

3.3.8 Other Acyclic Networks

Let us now consider the class of networks with bounded node degrees. For concreteness,
we can consider regular networks, such as linear regular arrays and two dimensional grids
(Figure 3.4), in which each node can transmit to any of its nearest neighbors. A simple
protocol to compute symmetric functions in such networks is to communicate the histogram
to the collector. This protocol has an associated rate of O( 1

log n
).

For the subclass of type-threshold functions, one can do even better. It is fairly easy
to show that the maximum rate is O(1). Consider the subclass of type-sensitive functions.
Is histogram communication order optimal for such functions? The answer is no. Consider
the following type-sensitive function:

f (x1, . . . , xn) = 0 if x1 + . . . xn is even
1 if x1 + . . . xn is odd.

(3.6)

It is easily verified that such a function is type-sensitive. It is equally easy to construct a
protocol which has O(1) rate: In the linear case, for example, each node receives the parity
of the partial sum of previous nodes, and forwards the parity of the partial sum including
its own measurement.

For some type-sensitive functions, however, such as the sum function, it is clear that
O( 1

log n
) rate is optimal, since the inverse of this is the logarithm of the size of the function

range. Thus, the characterization of maximum rate for the class of type-sensitive functions
does not hold for the linear array, and more generally for constant degree networks.

The general problem for these networks, which is as yet unresolved, is the problem
of determining maximum rate (or its order) for symmetric functions which are not type-
threshold, and which do not have large ranges. Two examples of functions for which the
answer is not known in general are the median and mode.
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The problem is somewhat more tractable for acyclic graphs. For the linear array, and
more generally for tree graphs, the maximum rate for the median and mode can be deter-
mined: The rates for both are O( 1

log n
). Upper bounding the performance of any protocol

is, as is typical, the difficult part of such problems.
One feature to note about the above results is that they are scaling results in the

network size, whereas communication complexity results are often order results in terms of
alphabet size. The former are thus more applicable when the network size is considerably
larger than alphabet size. In a scaling sense, we see that the computational throughput for
type-threshold functions is exponentially higher than for type-sensitive functions, in both
the collocated network as well as the random multi-hop network. Also, multi-hop networks
allow for a far greater degree of in-network compression, and consequently allow a higher
computational throughput than the collocated network.

There are some drawbacks with the model and results described above. First, the model
does not incorporate node or link failures. It is not clear if these results easily extend to
such unreliable scenarios. Second, there may be considerable overhead required for nodes
to know what computational operations they must carry out; the ‘roles’ of individual nodes
depend on their locations and thus must be dynamically assigned.

A further drawback of the model is that it does not take into account correlations in the
source measurements, which could be exploited if the requirement of exact computation
with probability 1 were relaxed.

3.4 Wireless Networks with Noisy Communications:
Reliable Computation in a Collocated Broadcast
Network

A natural generalization of the above models is the incorporation of noise into the channel
model. While the results in the previous section could be utilized by implementing error
correction, along with the already present block computation, and thereby constructing
protocols which are of the same order as their deterministic counterparts, the framework of
the previous chapter does not directly translate to a network with noisy links with one-shot
computation.

We present an example of such a problem. This problem was posed by El Gamal, and
subsequently studied by (Gallager 1988). We consider a network where all nodes are within
range of each other, i.e., a collocated network. This can also be called a broadcast network.
We will suppose that it consists of n nodes. Suppose for simplicity that each of the n nodes
has a measurement which is just one bit, 0 or 1.

Now we describe the model for communication in this broadcast network. At any
given time only one node can broadcast. The message to be broadcast can either be 0
or 1. We will suppose that every other node receives this broadcast; however, each such
reception can be erroneously received. In particular we will model the channel from the
transmitter to each node as a separate binary symmetric channel. By this we mean that
there is a probability ε > 0 with which a 1 is received as 0, and vice-versa. We will also
suppose the channels to different nodes are independent, that is, each node’s reception is
independent.
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3.4.1 The Sum of the Parity of the Measurements

Now we turn to the function to be computed. Let us consider the parity function defined by:

fparity(x1, x2, . . . , xn) = 1 if the number of xi’s that are 1 is even,

= 0 otherwise.

We note that parity is a particularly sensitive function of its arguments since even one
node’s message erroneously received can lead to a flip in the parity of the receptions. We
will address this problem as a one-shot computation problem.

If all receptions are noiseless, clearly n transmissions are necessary and sufficient to
compute the parity function exactly. This is therefore a lower bound even for the noisy case.

Due to the noise in the channel, any information transfer is liable to be erroneous with
some positive probability. Exact computation with probability one is therefore impossible.
Necessitated by this, we relax the requirement of exact computation. We will consider a
relaxation of the criterion to require computation of the correct answer to within some
probability of error.

The problem can now be posed as follows: Minimize the total number of transmitted bits
which will guarantee that the parity will be known to within a desired probability of error.

The key to the solution is to exploit the fact that even though the information obtainable
on any single transmission by any one receiver is liable to be wrong with significant error
probability, when we look at the totality of information that becomes available at all the
nodes, it can be used for error correction.

Since any broadcast is received by n nodes, and these receptions are independent, by
pooling their receptions, they can collectively make a good estimate of the single bit of
information involved in a transmission. There is, however, the issue that even pooling the
bits is a noisy process.

One simple solution is to use some error correction code, of which an example is
repetition coding – simply repeat the same transmission several times, say k times. This,
however, results in a total of kn transmissions. After these kn transmissions, a receiver could
make a maximum likelihood estimate of the bit. How large must k be in this approach?
An elementary computation shows that for a fixed small probability of error, the number k

must grow like log n. Note that this is the number of transmissions needed to communicate
the information at each node. Since there are a total of n nodes, it follows that this scheme
requires a total of �(n log n) transmissions. But this approach does not utilize the broadcast
nature of the receptions at all. The question is whether one exploit that feature to reduce
the communication cost of computing the parity function.

The above problem was addressed by (Gallager 1988). Let δ denote the stipulated max-
imum probability of error allowed in the final answer. Gallager constructed an innovative
protocol that requires only O(n log log n

δ
) transmissions to guarantee a probability of error

in the computation of parity of less than δ.
We now provide a an outline of this scheme. First we divide the nodes into several

subsets, each consisting of �(log n) nodes. The protocol itself consists of two phases:

1. In this first phase, every node repeatedly transmits its measurement (here just 0 or

1), a total of k times. Next, in each of the �
(

n
log n

)
subsets, each node makes an

estimate of the parity of the sum of the bits in its own subset.
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2. In a second phase, every node transmits its estimate of the parity of the sum. This
is done only once by each node. After all nodes have so transmitted, the collector
simply makes a maximum likelihood estimate.

A calculation shows that if one chooses k = �(log log n
δ
), then this is sufficient to guarantee

a probability of error less than δ.
In fact, one can even download all the data to the collector node. By suitably modifying

this scheme, it can be shown that using a scheme with a number of transmissions per
node that is of the same order k = �(log log n

δ
), in fact all the nodal bit values can be

communicated to the collector node with high probability. It is still an open question
whether this order in n is sharp, i.e., whether �(n log log n) transmissions is also necessary
for this purpose.

3.4.2 Threshold Functions

Another class of functions, threshold functions (which should be distinguished from the
class of type-threshold functions considered earlier), has also been addressed for this same
model of a noisy broadcast network by Kushilevitz and Mansour (1998). These are defined
as functions whose value is completely determined by whether the number of 1s in the
network exceeds some threshold. The difference between this class of threshold functions
and type-threshold functions is that in the latter class the threshold needs to be fixed and
independent of n. Examples of threshold functions include the AND, OR, and majority.
Kushilevitz and Mansour (1998) have provided the construction of a protocol that computes
a threshold function in time O(n). It can be shown, (see Giridhar and Kumar 2005), that
even if all transmissions were noiseless, the network would still need n transmissions.
Hence this scheme is order optimal.

We note that in both the scheme of Gallager as well as the scheme of Kushilevitz and
Mansour, the order of transmissions is fixed a-priori, and is not affected by the contents
of the transmissions. This is in contrast to several schemes for the noise-free model. For
example, the computation of the median in the two-party communication complexity prob-
lem (Kushilevitz and Nisan 1997), and the max computation in the broadcast network, both
are not so oblivious to order.

3.5 Towards an Information Theoretic Formulation

To truly understand the fundamental limitations on what can be computed in a wireless
sensor network requires an information theoretic treatment. This is as true for wireless
sensor networks as it is true for plain wireless networking. However, the difficulties involved
in wireless sensor networks are considerably more than in just wireless networking. In
this section we illustrate how one can model wireless sensor networks at the information
theoretic level, illustrate some known results, and outline the significant challenges that
still face us in the development of an information theoretic foundation for wireless sensor
networks.

Information theory allows modeling of the medium. It also allows modeling one feature
that we have not alluded to so far – the presence of spatial correlations in measurements.



3.5. TOWARDS AN INFORMATION THEORETIC FORMULATION 63

Figure 3.6 The Slepian-Wolf problem.

Taking these into account and developing algorithms that exploit such correlations can lead
to the elimination of redundancies and greater efficiencies. Finally, information theory can
also be used to model the distributed aspects of the problem, including source or channel
coding. More broadly one can aim for a comprehensive formulation of the distributed
computation problem. We should note though that while we can formulate such problems,
we are still very far off from any comprehensive solutions.

We begin by providing an outline of some of the known results in this area. We will
start with the problem of distributed compression, or what is called source coding. The
simplest setting to consider is two sensors that each have a separate time-sequence of
measurements, Suppose that for each time instant, the two measurements at the sensors are
correlated. This correlation between the two measurements is captured by a joint probability
distribution that is known to both nodes. We will, however, suppose that the measurements
are independent in the time dimension. We will also suppose for simplicity that the joint
distribution does not change with time. Fixing the time instant and suppressing it in the
notation, let us denote the two measurements by the two random variables X and Y , with
joint distribution p(x, y).

Let us suppose that each of the two sensors is connected to a collector node by a
communication link; see Figure 3.6. We will suppose that the two communication links are
noiseless, each with a throughput rate that we will denote by R1 and R2, respectively. The
collector node wishes to determine the values of both X and Y . This can thus be regarded
as a data collection problem, however simplified by the assumption of ‘wired links’ for
each node to the collector node.

Let us suppose that the entropy rate in the sequence of measurements {X1, X2, . . . ,

Xt , . . .} taken at node 1 is H(X). Then it is well known that a link of rate R1 ≥ H(X)

suffices to communicate the sequence reliably to the collector node. Similarly, if the entropy
rate of the sequence of measurements {Y1, Y2, . . . , Yt , . . .} taken at node 2 is H(Y), then a
link of rate R2 ≥ H(Y) suffices for it to communicate its measurements to the collector.

However, we can do better. Since the two measurements are correlated, there is redun-
dancy in the two measurements. Hence if the two nodes each had access to the other node’s
measurements, then they could cooperatively compress the data and transmit it over the
links. Thus if node 1 has communicated its information via a link of rate R1 ≥ H(X), then
node 2 only needs to send its ‘new information’. The entropy rate of this new information
is the conditional entropy H(Y |X). Thus all it needs is a link of rate R2 ≥ H(Y |X). How-
ever, this line of reasoning presumes that nodes 1 and 2 can share information, or at least
that node 2 has access to node 1’s information. A symmetric argument shows that if node 2
has a link of rate R2 ≥ H(Y), then if nodes 1 and 2 could cooperate, then node 1 only
needs a link of rate R1 ≥ H(X|Y). By a convexity argument, and using the fact that the
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joint entropy H(X, Y) can be written as H(X, Y) = H(X) + H(Y |X) = H(Y) + H(X|Y),
it can be deduced that any rate vector R = (R1, R2) satisfying:

R1 ≥ H(X|Y),

R2 ≥ H(Y |X),

R1 + R2 ≥ H(X, Y),

suffices when the two nodes are cooperating.
The question we wish to address is: What rate vectors suffice when the two nodes cannot

cooperate, i.e., when the two nodes are ‘distributed’? This is the problem of distributed
data compression. More formally, we wish to determine the rate region in the space of two-
dimensional vector rates, at which the sources can be individually compressed and sent to
the collector, and for which there are encoding and decoding schemes such that the collector
can reconstruct the two sources with an arbitrarily small probability of error. This problem
was solved in the classic paper of Slepian and Wolf (1973). The surprising result proved
by Slepian and Wolf is that the same rate region suffices as noted above for the cooperative
compression problem. Thus distributed source compression can be performed even without
node cooperation with the same efficiency as it could be in the case of node cooperation!

Now we examine what the further features are that need to be introduced to more fully
understand in-network information processing in wireless sensor networks. First, one may
be willing to tolerate some specified level of distortion in reconstructing the two sources.
This requires the specification of a distortion measure ρ (assumed to be the same for X

and Y just for simplicity), and the requirement that if X̂ and Ŷ are the two estimates,
then the distortion between X and X̂, and also between Y and Ŷ satisfy E[ρ(X, X̂)] ≤ d,
E[ρ(Y, Ŷ )] ≤ d ′. This gives rise to a rate vs. distortion curve which could serve as a
bandwidth versus QoS curve. This problem is open.

One special case of this problem can be formulated as follows. Suppose that one of the
sources is available as side information to the collector, and only the other source is to be
determined. This problem was solved by (Wyner and Ziv 1976) (Figure 3.7).

One can treat the problem of function computation, say of a function f (X, Y ) of the
two sources, by formulating a distortion criterion that models the error in determining the
value of this function. Orlitsky and Roche (1995) have addressed the problem with the side
information Y . They determined the required rate of the link in terms of a measure defined
on the two random variables and a certain graph defined by the function f (·), called the
conditional graph entropy.

Generalizing in the direction of the communication model, one can bring in wireless
aspects where the medium itself is shared, and the two (or more sources) are not regarded as

Figure 3.7 The Wyner-Ziv side information problem.
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having separate ‘links’. Recently, progress has been made on information theoretic scaling
laws for wireless networks; (see Xie and Kumar 2004).

Combining the more general wireless network model, correlated sources, fidelity crite-
ria, and distributed processing, will bring us closer to an information theoretic foundation
for wireless sensor networks. However, it would still require addressing aspects that to
date have not been captured as ideally by information theory as one would like, even for
communication problems – latency and energy aspects.

All this remains as a final frontier.

3.6 Conclusion

Since wireless sensor networks are often application specific, may be intended for unat-
tended operation over long periods of time, and may even involve large numbers of nodes,
there is great interest in designing their operations to be as efficient as possible, so that
batteries need to be replaced only infrequently, low cost nodes with low communication
bandwidths can be deployed, or very little memory or processing capability is needed. One
can draw an analogy with the area of wireless networking, where also there are similar pres-
sures to maximally exploit the capabilities of the wireless communication medium. Such
pressures in that area have resulted in investigation of cross-layer approaches (Kawadia
and Kumar 2005). The goal of such cross-layer designs is to somehow optimally merge
the functionalities of various layers of the communication protocol stack so that one elimi-
nates the inefficiencies involved in layering. We believe that in the area of wireless sensor
networks, similar pressures will necessitate a joint study of communication, computation,
and inference.

As we have seen in this chapter, wireless networks combine interesting aspects of com-
munication networks as well as distributed computation. We have seen how the notion of
block coding, central to communication system design for increasing throughput, can also
be exploited for wireless sensor networks to enhance computational throughput. Indeed it
can lead to significant order of magnitude increases. Similarly we have seen how exploit-
ing the shared wireless medium, for example, by spatial reuse, can lead to exponential
decreases in computational cycle-time. We have also seen how the intrinsic nature of a
function itself can allow for enhanced computational throughput, an idea that originates in
the theory of computational complexity. For example, the max function allows exponential
speed-up in computational cycle-time in comparison to the mean function. We have also
seen how even for a particularly sensitive function such as parity, one can still exploit an
unreliable wireless medium. All these developments suggest that a theory of in-network
processing of information in wireless sensor network, that is rich in ideas, can be very
useful for efficiency improvement of wireless sensor networks.

This theoretical endeavor is very much in its infancy. Results on the tradeoffs between
latency, energy consumption or lifetime, and computational throughput, are needed. Also,
one would like to exploit better models of the physical environment producing the mea-
surements, for example, spatial correlation or band-limitedness.

We hope that these motivations and possibilities will galvanize further research in this
emerging area.
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The Sensing Capacity
of Sensor Networks

Rohit Negi, Yaron Rachlin, and Pradeep Khosla

4.1 Introduction

The essential function of a sensor network is to identify the state of an environment
using multiple sensors. Other aspects of sensor network design, such as the communi-
cation, power, and computational resources, are evaluated by their ability to facilitate this
function. In classic literature, there are two distinct flavors to this problem – an ‘esti-
mation problem’ where ‘state’ is continuous, and a ‘detection problem’ where ‘state’ is
captured by a finite set of hypotheses, such as a binary hypothesis testing problem. In
this chapter, we are interested in a structured large-scale detection problem that appears
in several useful situations. In our problem, ‘state’ belongs to an exponentially large
set. However, the structure of the set allows us to demonstrate a fundamental infor-
mation theoretic relationship between the number of sensor measurements and the abil-
ity of a sensor network to identify the state of the environment to within a desired
accuracy.

In a sensor network, each state of the environment results in a set of sensor measure-
ments. The correspondence between the state and the sensor measurements can be thought
of as a code, with the sensor network playing the part of an encoder. We illustrate this
analogy and the models used in the remainder of this chapter by considering the following
distributed sensing applications.

Wireless Sensor Networks: Signal Processing and Communications Perspectives A. Swami, Q. Zhao, Y.-W. Hong and L. Tong
Ò 2007 John Wiley & Sons, Ltd
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4.1.1 Large-Scale Detection Applications

Large-scale detection applications appear in several useful situations. For example, consider
the problem of robotic mapping. Thrun (2002) provides a useful survey of this active area
of research. In a mapping application, a group of robots collects sensor measurements in
order to obtain a map of a given area, which can then be used to perform tasks such as
navigation. Elfes (1989) introduced occupancy grids, a widely used approach to robotic
mapping. The occupancy grid approach models an area as a grid, where each grid block
takes on values from a finite set. In most mapping applications, a grid block set to ‘1’
corresponds to an obstacle (therefore, non-traversable) while a grid block set to ‘0’ indicates
free space (therefore traversable). A group of robots collects a sequence of noisy sensor
measurements, such as sonar range measurements. The state of the environment is encoded
into these measurements. These sensor measurements are then used to identify the location
of obstacles in the area, so as to allow navigation or other robotic tasks. While mapping
has been successfully implemented in practice, many basic theoretical questions remain
unaddressed. How many sensor measurements must the robots collect to obtain an accurate
map of the area? How does this number vary with sensor field of view and resolution? Is
it more effective to use a large number of cheap wide-angle sensors or a small number of
expensive narrow-angle sensors?

Consider another example involving a network of cameras. Yang et al. (2003) demon-
strated a system of multiple cameras that counts the number of people in a room while
Hoover and Olsen (1999) used multiple cameras to localize motion inside a room. In both
cases, the area under observation can modeled as a grid. In the motion example, each
grid block takes on two values, indicating motion or absence of motion in that grid block.
Each camera only observes a subset of the room. More importantly, each image is only
a two-dimensional representation of the three-dimensional space, and therefore, inferring
the motion map requires fusing observations from multiple cameras. In this example, the
cameras encode the true motion map of the room (i.e., state) into two-dimensional images.
While algorithms are available for such applications, there is no theoretical analysis of
performance, which could guide the design of such a network.

A third application is the use of chemical sensor arrays to detect complex combina-
tions of chemicals in a sample. Burl et al. (2002) discuss the design of such arrays. A
complex substance can be modeled as a mixture of multiple constituent chemicals at var-
ious discrete concentrations. A chemical sensor array consists of several sensors, each of
which is designed to be semi-selective. This means that each sensor in the array reacts to
only a subset of the constituent chemicals. The chemical sensor array encodes the complex
chemical being sensed (i.e., state) into a vector of measurements. The chemical sensors
which comprise the array are based on different technologies and possess diverse charac-
teristics. Again, a theoretical analysis of performance would shed light on the design of
such chemical sensor arrays.

As a final example of large-scale detection problems, consider the problem of detection
and classification of targets over a large geographical area, as illustrated in Figure 4.1. Con-
sider a seismic sensor-based approach to this problem, as demonstrated in Li et al. (2002),
Tian and Qi (2002). For such applications, the environment can be modeled as a discrete
binary field, where each entry represents the presence or absence of a target at a grid
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Figure 4.1 Seismic sensor network with sensors (gray cubes) sensing vibrations from
multiple vehicles.

point. Seismic sensors are deployed throughout the geographical area. Each seismic sensor
produces an output, in response to the vibrations caused by moving targets in its proximity.
However, such sensors cannot distinguish between a few close targets and a larger number
of distant targets. Therefore, measurements from multiple seismic sensors must be fused
in order to obtain an accurate map of the environment. In this example, the network of
seismic sensors encodes the locations and class of targets in the field.

All these examples have the following common feature. They are detection problems,
with a large number of possible hypotheses (states). However, the state can be expressed
as either a discrete vector or a discrete field. Each sensor in the network reacts to only
a portion of this vector or field. The function of the sensor network, then, is to infer the
state by fusing the noisy measurements. In this chapter, we will model and analyze the
performance of sensor networks in such large-scale detection problems by utilizing a key
insight – that such problems bear a striking similarity to the problem of communicating
over a noisy channel.

4.1.2 Sensor Network as an Encoder

The examples discussed in Section 4.1.1 motivate the following abstract model, shown in
Figure 4.2. In this model, the state of the environment is represented by a discrete ‘target
vector’ v or field. An ideal sensor network would react to the state to produce the vector of
noiseless sensor outputs x. However, x is corrupted by sensor and other noise so that we
only observe the noisy sensor output vector y. A detection algorithm processes y to produce
a guess v̂ of the state. In the subsequent discussion, we use ‘state’ and ‘target vector’ inter-
changeably. We call each entry of the target vector a ‘target position’. In the case of binary
v, each target position is a bit, denoting the presence or absence of a target at that position.
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Figure 4.2 Sensor network model.
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Figure 4.3 Communication channel model.

Notice that this sensor network model bears a strong similarity to the classical com-
munication channel model in Figure 4.3. The state v is the ‘message’ being transmitted
through a noisy channel. The sensor network plays the role of a channel encoder, pro-
ducing codewords x. The detection algorithm is the channel decoder, which guesses the
message. The fundamental limit of a communication channel is characterized by the cel-
ebrated results in Shannon (1948) on channel capacities. In a communication channel, the
maximum data rate that allows communication with arbitrarily low error probability is
called the ‘channel capacity’. Moura et al. (2002) proposed the idea of a ‘sensing capacity’
in order to find the minimum number of sensors required to detect the state of multiple
targets. The question of whether there exists a positive sensing capacity, and therefore the
practical value of the sensing capacity, remained open. The sensing capacity as defined
in Moura et al. (2002) is zero, and therefore lacks practical value. However, the idea of
a sensing capacity motivated the theoretical work described in this chapter. Rachlin et al.
(2004) introduced a definition of sensing capacity that allowed for detection of multiple
targets to within a tolerable error. Using this definition, Rachlin (2007) proves the exis-
tence of a strictly positive sensing capacity for a number of sensor network models. These
sensing capacity results bound the minimum number of sensors for which detection error
arbitrarily close to zero is achievable. The sensing capacity differs significantly from the
classical Shannon channel capacity because of fundamental differences between the two
models.

The most important difference between a sensor network channel model and a com-
munication channel model arises due to the constrained encoding of sensor networks. In
communications, a set of messages can be encoded in an arbitrary manner, and so, a mes-
sage can be de-coupled from its codeword representation. As a result, similar messages
can be distinguished with high accuracy by choosing sufficiently different codewords. In
contrast, a sensor network couples a state and its codeword representation. Codewords pro-
duced by a sensor network must respect the constraints of the sensing mechanism, and so
cannot be completely arbitrary. Further, given a fixed set of sensors and sensor locations,
it is clear that similar states (vs that differ in only a few elements) are likely to produce
similar codewords x. Therefore, it is not possible to distinguish between two very similar
states to an arbitrary accuracy. Whereas the similarities of the sensor network model and
the communications channel model motivate the application of the large body of insights in



4.1. INTRODUCTION 73

the latter to the sensor network problem, the differences between them caution us to apply
such insights carefully, and to understand the impact of these differences on the theoretical
properties of sensor networks.

4.1.3 Information Theory Context

Before we delve more deeply into the theory of sensing capacity, we put this work into
context by providing a brief review of other results on the information theoretic analysis
of sensor networks.

Recent years have seen a large number of papers applying ideas of information theory to
obtain performance limits on sensor networks. An idea that has been heavily studied in the
context of sensor networks is distributed source coding. Slepian and Wolf (1973) and Wyner
and Ziv (1976) provide limits on the compression of separately encoded correlated sources.
Pradhan et al. (2002) apply these results to sensor networks. Xiong et al. (2004) provide
an overview of this area of research. This work focuses on compressing correlated sensor
observations to reduce the communication bandwidth required. The distributed nature of the
compression is the object of analysis in that work. In contrast, we focus directly on the limits
of detecting the underlying state of the environment using noisy sensor observations. The
notion of sensing capacity characterizes the limits that sensing (e.g. sensor type, range, and
noise) imposes on the attainable accuracy. We do not examine the compression of sensor
observations, or the resources required to communicate sensor observations to a point in
the network. Instead, we focus on the limits of detection accuracy assuming complete
availability of noisy sensor observations. Thus, our large-scale detection problem is quite
unlike a distributed source coding problem. An easy way to distinguish between the two is
to consider the case where the sensor network has infinite communication and computation
resources. In that case, the distributed source coding problem becomes irrelevant, since
each sensor can communicate all its observations in their entirety to a computer, which
can then perform centralized compression. However, even in this scenario, there will exist
fundamental limits for our large-scale detection problem.

The work presented in this chapter is most closely related to work on the limits of
estimation or detection accuracy in sensor networks. Varshney (1997) describes a large
body of work in distributed detection which focuses on hypothesis testing problems where
the number of hypotheses is small. Chamberland and Veeravalli (2003) and Chamberland
and Veeravalli (2004) extend this work to consider a decentralized binary detection problem
with noisy communication links to obtain error exponents. D’Costa et al. (2004) analyze the
performance of various classification schemes in classifying a Gaussian source in a sensor
network, which is an m-ary hypothesis testing problem where the number of hypotheses
is small. Kotecha et al. (2005) analyze the performance suboptimal classification schemes
for classifying a fixed number of targets. While in this work the number of hypotheses is
exponential in the number of targets, the fundamental limits of sensing for a large number
of targets, and therefore an exponentially large number of hypotheses, are not considered.
Chakrabarty et al. (2001) consider the problem of sensor placement in detecting a single
or few targets in a grid. This problem is similar to large-scale detection problems studied
in this chapter, though due to the restrictions on the number of targets, the number of
hypotheses is comparatively small. A coding-based approach was used to propose specific
sensor configurations, and to propose bounds on the minimum number of sensors required
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for discrimination using this structured approach. Sensors were noiseless, and of limited
type, and no notion of sensing capacity was considered. In contrast to existing work on
detection and classification in sensor networks, we focus on fundamental performance limits
for large-scale detection problems.

Another set of results examines the limits of estimating a continuous field using sensors
which obtain point samples. Scaglione and Servetto (2002) study the relationship of trans-
port capacity and the rate distortion function of a continuous random processes. Nowak
et al. (2004) study the estimation of an inhomogeneous random field using sensor that col-
lect noisy point samples. Other work on the problem of estimating a continuous random
field includes Marco et al. (2003), Ishwar et al. (2003), Bajwa et al. (2005), Kumar et al.
(2004). Working on a different sensor network application, Gastpar and Vetterli (2005)
consider the estimation of continuous parameters of a set of underlying random processes
through a noisy communications channel. Unlike the estimation problems discussed in these
papers, this chapter considers the problem of large-scale detection.

4.2 Sensing Capacity of Sensor Networks

The sensing capacity limits the number of sensor measurements required to achieve a
desired detection accuracy. In this section, we define and limit the sensing capacity for
a specific sensor network model that allows arbitrary sensor connections. Extensions to
other sensor network models are discussed in Section 4.3. We emphasize that the sensing
capacity is a quantity that describes the fundamental limits of a sensor network model,
rather than a particular sensor network.

4.2.1 Sensor Network Model with Arbitrary Connections

We describe a sensor network model with arbitrary connections which was introduced in
Rachlin et al. (2004). An example of this model is shown in Figure 4.4. The graphical
nature of the arbitrary connections model is inspired by a general graphical model for

Figure 4.4 A sensor network model with k = 7, n = 4, c = 2.
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sensor networks introduced in Moura et al. (2003), the first publication of which we are
aware that introduced the idea of modeling sensor networks as a graphical model. The
state of the environment is modeled as a k-bit binary target vector v. Each entry of the
vector, which we call ‘target position’, may represent the presence or absence of a target
in some spatial region, or may have other interpretations, such as the presence or absence
of a chemical. The possible target vectors are denoted vi , i ∈ {1, . . . , 2k}. We say that ‘a
certain v has occurred’ if that vector represents the true state of the environment.

Sensor network definition

We define a sensor network as a bipartite graph showing the connections of n identical
sensors to k target positions. In the sensor network model that we describe in this section,
we assume that each of the c connections of each sensor can be made arbitrarily to any of
the k target positions (allowing replacement). Thus, sensor � is connected to (i.e., senses) up
to c out of the k target positions, with some positions possibly being sensed more than once.
We refer to such sensors as having a range c. Ideally, each sensor produces a value x ∈ X
that is an arbitrary function of the targets which it senses, x� = �(v�t1 , . . . , v�tc ). We call
the ideal output vector corresponding to target vector vi as xi . However, we assume that
the ideal output of a sensor x is corrupted by noise to produce the observed output y ∈ Y .
We assume that the conditional p.m.f. PY |X(y|x) determines the sensor output. Since the
sensors are identical, PY |X is the same for all sensors. Further, we assume that the noise is
independent in the sensors, so that the ‘sensor output vector’ y relates to the ideal output
x as PY |X(y|x) = ∏n

�=1 PY |X(y�|x�). Observing the output y, a detector v̂ = g(y) must
determine which of the 2k target vectors vi has actually occurred.

Comment: The arbitrary connections model for sensor networks is particularly easy to
analyze and provides useful insight into the large-scale detection problem. However, it is
also an accurate model for sensing situations where the target vectors do not have a ‘spatial
interpretation’. For example, such a model can represent a chemical sensor array, where
the target positions represent different chemicals. A network of sensors placed on various
hosts to monitor a computer network such as the internet is another such situation. An
interesting application of this model is to the problem of testing a large set of individuals
for a particular disease which has a low incidence rate. i.e., instead of testing each individual
separately, a test (‘sensor’) is made on the combined samples of a subset of the individuals.

Example: Figure 4.4 shows the target vector v = (0, 0, 1, 0, 1, 1, 0) indicating 4 targets
present among the 7 positions. There are four sensors, each of which senses c = 2 target
positions. The ideal sensor output is equal to the number of targets present in the target
positions that it observes, x� = ∑c

u=1 v�tu , so that x ∈ X = {0, 1, . . . , c}. Such a model can
describe a seismic sensor which can sense the intensity of vibration to detect the number of
targets. A more refined model may allow a weighted sum, for example. Given the sensor
network configuration, represented as the connections between sensors and target positions
in the graph, the ideal output (codeword) x = (1, 1, 2, 0) is associated with the given v.
Unlike in classical codes in communications, where the codeword associated with a message
can be chosen arbitrarily, the codeword of a sensor network is computed as a function of the
state of the environment. Consider the target vector v′ = (0, 0, 1, 0, 1, 1, 1), which differs
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Table 4.1 Noise model PY |X
with noise probability p.

PY |X Y = 0 Y = 1 Y = 2

X = 0 1 − p p 0
X = 1 p

2 1 − p
p

2
X = 2 0 p 1 − p

from v in only one target position. The codeword associated with v′ is x′ = (1, 1, 2, 1),
which differs from x in only one position. This demonstrates that unlike in communications,
where codewords can be chosen arbitrarily, the codewords corresponding to two states of the
environment are dependent due to the fixed sensor network configuration. This dependence
suggests that similar target vectors will result in similar codewords, which may be easily
confused at the detector. Thus, it is important to allow for some distortion D in decoding
in sensor networks, if the error probability is to converge to zero. A sample noise model
PY |X(y|x) is shown in Table 4.1. The codeword in Figure 4.4 is corrupted by noise so that
y = (2, 1, 2, 1). In this case, given y, v′ has a higher likelihood than v. Therefore, due
to codeword dependence, similar states of the environment can be difficult to distinguish
using noisy sensors.

It was argued that the detector must allow for some distortion D due to the dependence
between sensor codewords. The distortion is the fraction of target positions that are misclas-
sified by the detector. Denoting dH(vi, vj ) as the Hamming distance between two target
vectors, we define the tolerable distortion region of vi as Dvi

= {j : 1
k
dH(vi, vj ) < D}.

Then, given that vi occurred and given a fixed sensor network s, the probability of error is
Pe,i,s = Pr[error|vi, s, xi, y] = Pr[g(y) �∈ Dvi

|i, s, xi, y]. The mean probability of error is
Pe,s = 1

2k

∑
i Pe,i,s . The rate R of a sensor network is defined as the ratio of target posi-

tions being sensed to the number of sensor measurements, R = k
n

. The sensing capacity of
the arbitrary connections sensor network model, C(D), is defined as the maximum rate R

such that below this rate there exists a sequence of sensor networks (with increasing k, n)
with a mean probability of error approaching zero, i.e., Pe,s → 0 as n → ∞ at a fixed
rate R.

It is not clear a priori that C(D) is non-zero. The main contribution of this section is to
show that C(D) can be non-zero in a variety of situations, i.e., that it is possible to obtain
arbitrarily low error probabilities, as long as the number of sensors grows proportionally to
the number of target positions, with the correct proportionality factor. The sensing capacity
does not provide a guarantee for the error probability of a particular sensor deployment.
However, at rates below the sensing capacity, for large k and n, a random sensor deployment
can achieve arbitrarily low probability of error with high probability.

4.2.2 Random Coding and Method of Types

How many sensor measurements are necessary to distinguish among all target vectors to
within a desired accuracy? In order to answer this question, we use Shannon’s random
coding idea. In communications, the random coding idea is used to prove the existence of
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non-zero channel capacities. This is accomplished by analyzing the average probability of
error of an ensemble of randomly generated codes. Analogously, instead of analyzing the
probability of error of a fixed sensor network s, we analyze the average probability of error
of an ensemble of randomly generated sensor networks. Using this approach, we limit the
rate, such that below this rate there exist sensor networks that can asymptotically achieve
the desired detection accuracy.

We generate sensor networks randomly in the following manner. Since the model in
this section allows an arbitrary choice (with replacement) of target position for each sensor
connection, we define a probabilistic model where each of the c connections of each sensor
independently picks one of the k target positions with equal probability. In particular, we
allow more than one connection of a given sensor to pick the same target position. Thus, a
given sensor network s has a certain probability of occurrence. We denote the expectation of
the probability Pe,i,s over all sensor networks, given that vi occurred, as Pe,i

.= E S[Pe,i,S].
We denote the expected mean error probability as Pe

.= 1
2k

∑
i Pe,i = E S[Pe,S]. Then,

Theorem 4.2.1 provides a lower bound CLB(D) for the sensing capacity C(D) of the
sensor network model with arbitrary connections.

The proof of Theorem 4.2.1 relies on the method of types Csiszar (1998), and its
statement requires an explanation of types and joint types. The ideal (noiseless) output
vector of sensor outputs x depends on the sensor network s, and on the target vector v

that occurs. Suppose that the target vector vi occurs. Since each sensor makes each of its c

connections independently and uniformly over the k target positions, the distribution of its
ideal output xi depends only on the type γ = (γ0, γ1) of vi . The type of vi is the fraction
of 0s and 1s in vi , denoted γ0 and γ1 respectively. It follows that PXi

(xi) = P γ ,n(xi) =∏n
�=1 P γ (xi�) for all vi of the same type γ .

Due to the fact that a single sensor network encodes all target vectors, the codewords
associated with different target vectors are dependent, unlike the case for coding in com-
munication. The joint probability of two codewords PXi ,Xj

depends on the joint type of
the corresponding target vectors vi, vj . The joint type is λ = (λ00, λ01, λ10, λ11). Here, λ01

is the fraction of positions in vi, vj where vi has bit ‘0’ while vj has bit ‘1’. Similarly, we
define λ00, λ10, λ11. Again, due to the independent and uniform sensor connections, PXi ,Xj

depends only on the joint type λ, i.e., PXi ,Xj
(xi, xj ) = P λ,n(xi, xj ) = ∏n

�=1 P λ(xi�, xj�)

for all vi, vj of the same joint type λ. Note that the joint type λ also specifies the type γ

of vi as γ0 = λ00 + λ01, γ1 = λ10 + λ11.

Example: We continue the earlier example based on the sensor network in Figure 4.4. We
now assume that each of the c = 2 connections of each sensor can be made independently
and uniformly over the target positions. Table 4.2 lists the types of four vectors vj , and
their joint type with vi = 0010110. Given a target vector vi , a sensor will output ‘2’ only if
both of its connections connect to positions with a ‘1’. For a vector of type γ , this occurs
with probability (γ 1)

2. Table 4.3 describes the p.m.f. for the other sensor values, given
that a vector of type γ occurred. Given two target vectors vi, vj of joint type λ, a sensor
will output ‘0’ for both target vectors only if both its connections are connected to target
positions that have a ‘0’ bit in both these target vectors. This happens with probability
(λ00)

2. Table 4.4 lists the joint p.m.f. PXiXj
(xi, xj ) = P λ(xi, xj ) for all output pairs xi, xj

corresponding to joint type λ.
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Table 4.2 Joint types λ for four pairs of target
vectors.

vj γ of vj λ of vj with vi = 0010110

0010110
( 4

7 , 3
7

) ( 4
7 , 0, 0, 3

7

)
0000110

( 5
7 , 2

7

) ( 4
7 , 0, 1

7 , 2
7

)
1000011

( 4
7 , 3

7

) ( 2
7 , 2

7 , 2
7 , 1

7

)
0000000

(
1, 0

) ( 5
7 , 0, 3

7 , 0
)

Table 4.3 Distribution of Xi in
terms of the type γ of vi when
c = 2.

Xi Xi = 0 Xi = 1 Xi = 2
PXi

(γ0)
2 2γ0γ1 (γ1)

2

Table 4.4 Joint distribution of Xj and Xi in terms
of the joint type λ of vi, vj when c = 2.

PXiXj
Xj = 0 Xj = 1 Xj = 2

Xi = 0 (λ00)
2 2λ00λ01 (λ01)

2

Xi = 1 2λ00λ10 2 (λ10λ01 + λ00λ11) 2λ01λ11

Xi = 2 (λ10)
2 2λ10λ11 (λ11)

2

4.2.3 Sensing Capacity Theorem

We specify two probability distributions required to state the Sensing Capacity Achiev-
ability Theorem. The first is the joint distribution of the ideal output xi when vi occurs
and the noise corrupted output y caused by it. i.e., PXiY (xi, y) = ∏n

�=1 PXiY (xi�, y�) =∏n
�=1 PXi

(xi�)PY |X(y�|xi�). The second distribution is the joint distribution of the ideal
output xi corresponding to vi and the noise corrupted output y generated by the occur-
rence of a different target vector vj . We can write this joint distribution as Q

(j)

XiY
(xi, y) =∏n

�=1 Q
(j)

XiY
(xi�, y�), where Q

(j)

XiY
(xi�, y�) = ∑

a∈X PXiXj
(xi�, xj = a)PY |X(y�|xj = a).

Notice that the joint distributions over the sensors factor into a product because the sensor
connections are independent and the noise in the sensors is independent. Also, note that
although Y was produced by Xj , there is dependence between Xi and Y because of the
dependence of Xi and Xj . As argued earlier, PXi

and PXi,Xj
can be computed using the

type γ and joint type λ respectively. Thus, we write

PXiY (xi, y) =
n∏

�=1

P
γ
XiY

(xi�, y�)

.= P
γ
XiY

(xi, y)
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Q
(j)

XiY
(xi, y) =

n∏
�=1

Qλ
XiY

(xi�, y�)

.= Qλ
XiY

(xi, y)

where P
γ
XiY

(xi, y) = P γ (xi)PY |X(y|xi) and Qλ
XiY

(xi, y) = ∑
a∈X P λ(xi, xj = a)

PY |X(y|xj = a). We are now ready to state the main theorem of this section.

Theorem 4.2.1 (Sensing Capacity Achievability Theorem – Arbitrary Connections
Model) Denoting D(P ‖Q) as Kullback-Leibler distance and H(P ) as entropy (as defined
in Cover and Thomas (1991)), the sensing capacity at distortion D is bounded as,

C(D) ≥ CLB(D) = min
λ

λ01+λ10≥D
λ00+λ01=γ0
λ10+λ11=γ1

D
(
P

γ
XiY

‖Qλ
XiY

)
H(λ) − H(γ )

(4.1)

where γ = (0.5, 0.5) while λ = (λ00, λ01, λ10, λ11) is an arbitrary probability mass function.

We note that the bound above is positive because it is the ratio of two positive quantities.
The numerator is a Kullback-Leibler distance and the denominator is the difference of the
entropy of a joint distribution and the entropy of a marginal of that distribution. This bound
differs significantly from Shannon’s famous channel capacity result for a communication
channel. The most striking difference is that the bound depends not on a mutual information,
but on a Kullback-Leibler distance. This difference is interesting because of the frequent
use of mutual information as a sensor selection metric (e.g., Manyika and Durrant-Whyte
(1994)). Theorem 4.2.1 shows that the probability of error in large-scale detection problems
is related to a Kullback-Leibler distance. A relationship to mutual information is not obvi-
ously apparent. Intuitively, mutual information characterizes distance between codewords
that are uniformly spread out over the space of possible codewords. Such a distribution is
feasible in a communication channel because each message can be mapped to any arbitrary
codeword within the allowable space. Figure 4.5 illustrates this fact. Figure 4.5 depicts
the codewords associated with messages (target vectors) with a varying number of ones
and zeros, as indicated in the legend. The codewords corresponding to the messages are
independent and identically distributed (i.i.d.) as in channel capacity proofs. All the code-
words are then projected along two randomly chosen orthogonal basis vectors, to allow
a visual depiction. As expected, Figure 4.5 shows no discernible relationship between a
message and its corresponding codeword. In contrast, the codewords in a sensor network
are strongly dependent on the specific state (target vector). This fact is demonstrated in
Figure 4.6. Figure 4.6 depicts the sensor network codewords associated with target vectors
with a varying number of ones and zeros (i.e., type γ ). All target vectors are encoded
using a single randomly generated sensor network with arbitrary connections. The sensors
output a count of the number of ones in the target positions which they observe. The
codewords are then projected along the same pair of orthogonal vectors used to generate
Figure 4.5. Figure 4.6 demonstrates a strong dependence between the type of a target vec-
tor and its codeword distribution. Thus unlike in communication, the codewords are not
identically distributed. Further, the figure also demonstrates that similar target vectors yield
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Figure 4.5 Illustration of codeword geometry of communication channel code.
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Figure 4.6 Illustration of codeword geometry of sensor network code.

similar codewords. More generally, the codewords obtained by the random sensor network
are dependent, unlike the case in Shannon’s random coding method for communication
channels.

Another way in which the bound differs from the classical channel capacity result is due
to the denominator in the bound. This denominator accounts for the non-identical codeword
distribution of sensor networks. Based on the sensing model, as demonstrated in Figure 4.6,
it is possible to have codewords that are ‘clustered’. Finally, another difference with channel
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capacity is the fact that the bound is a minimum over some set of distributions. This occurs
because in sensor networks, not all codewords contribute equally to the probability of an
error. In fact, target vectors are more likely to be incorrectly decoded into target vectors that
are close to them. In summary, if the codewords of the sensor network were independently
and identically distributed, the bound shown in Theorem 4.2.1 would reduce to Shannon’s
classic channel capacity result based on mutual information I (X;Y). Thus, one of the
primary differences between the sensing capacity and channel capacity is the constrained
encoding in sensor networks.

We outline the proof of Theorem 4.2.1. A complete proof can be found in Rachlin
(2007). The proof broadly follows the proof of channel capacity provided by Gallager
(1968), by analyzing pair-wise error probabilities, averaged over randomly generated sensor
networks. However, it differs from Gallager (1968) in several important ways. The most
important difference arises due to the non i.i.d codeword distribution induced by a random
‘encoder’ (i.e., sensor network). We use the method of types to group the exponential
number of pair-wise error probability terms into a polynomial number of terms, so as to
upper bound the probability of error Pe.

Proof Outline. For a fixed sensor network s there is a fixed and known correspondence
between target vectors vj and codewords xj s. We assume a Maximum-Likelihood (ML)
decoder, gML(y) = arg maxj PY |X(y|xj ). For this decoder, we consider the expected mean
probability of error Pe = 1

2k

∑
i Pe,i , where Pe,i = E S[Pe,i,S]. Pe,i,s is the probability

of error for a fixed sensor network s given that target vector vi has occurred. Pe,i is
obtained by taking the expectation over all randomly generated sensor networks. Since
the sensor network is randomly generated, the codewords are random. Denoting the set
of random codewords as C = {X1, . . . , X2k } and assuming a uniform distribution over the
target vectors (due to the mean probability Pe), we can write,

Pe = E V YC[Pe,V ,Y ,C] (4.2)

where Pe,V ,Y ,C = Pr(g(Y ) �∈ DV |V , Y , C). Using the fact that Pe|V ,Y ,C is a probability, we
can bound Pe as follows,

Pe ≤ E V YC

[∑
w

Pr(g(Y ) ∈ Sw|V , Y , C)ρ

]

where ρ ∈ [0, 1] and {S1,S2, . . .} is any partition of the complement of DV (denoted DV ).
Using the union bound to upper bound Pr(g(y) ∈ Sw|i, y, C) in terms of pairwise error
probabilities, we obtain the bound:

Pe ≤ E V YC

∑
w

∑
j∈Sw

Pr(g(Y ) = vj |V , Y , C)

ρ (4.3)

The probability term Pr(g(Y ) = vj |V , Y , C) is a pairwise error term, depending only on
the Xi associated with V and Xj associated with vj . Using this fact, the concavity of xρ

for ρ ∈ [0, 1], and Jensen’s inequality, we obtain the following bound on (4.3):

Pe ≤ E V YXi

∑
w

∑
j∈Sw

E Xj |Xi

[
Pr(g(Y ) = j |V , Y , Xi , Xj )

]ρ (4.4)
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Using the ML decoder, the probability term above equals one only if vj has the highest
likelihood, and is zero otherwise. This allows us to bound the probability term, resulting
in the following:

Pe ≤ E V YXi

∑
w

∑
j∈Sw

E Xj |Xi

[(
PY |X(Y |Xj )

PY |X(Y |Xi)

) 1
1+ρ

]ρ (4.5)

The bound (4.5) has an exponential number of pairwise error terms. However, all the
probability distributions can be equivalently specified by the type γ and joint type λ instead
of specific i, j pairs. Since there are only a polynomial (in k) number of types, this allows
us to group the terms into a polynomial number of sets, one for each joint type. For this
purpose, we choose each Sw to be a distinct joint type λ and let w enumerate the set Sγ (D)

of all the λ that are the joint type of V and any vj ∈ DV . Then Eq. (4.5) can be written as,

Pe ≤
∑
γ

2−kD(γ ‖(0.5,0.5))
∑

xi∈X n

∑
y∈Y n

P γ (xi)PY |X(y|xi)

·
∑

λ∈Sγ (D)

2k(H(λ)−H(γ ))
∑

xj ∈X n

P λ(xj |xi)

(
PY |X(y|xj )

PY |X(y|xi)

) 1
1+ρ

ρ

The exponential term within the bracket is simply a bound on the size of set Sw , while the
exponential term outside the bracket is the probability of type γ . We can write Sγ (D) in
terms of λ as below.

Sγ (D) = {λ : λ01 + λ10 ≥ D, γ 0 = λ00 + λ01, γ 1 = λ10 + λ11} (4.6)

Since each sensor forms independent connections and has independent noise, the joint
p.m.f.s factor into a product. Using the fact that the number of types is polynomial in k,
we get the bound,

Pe ≤ 2−nEr(R,D)+o(log(n)) (4.7)

where o(log(n)) grows logarithmically. Here, we define:

Er(R, D) = min
γ

min
λ∈Sγ (D)

max
0≤ρ≤1

E(ρ, λ) − ρR(H(λ) − H(γ )) + D(γ ‖(0.5, 0.5)) (4.8)

E(ρ, λ) = − log

(∑
ai∈X

∑
b∈Y

P γ i (ai)PY |X(b|ai)
1

1+ρ

( ∑
aj∈X

P λ(aj |ai)PY |X(b|aj )
1

1+ρ

)ρ
)

The average error probability Pe → 0 as n → ∞ if Er(R, D) > 0. This is possible when
R is bounded as follows:

R < min
λ

λ01+λ10≥D
λ00+λ01=γ0
λ10+λ11=γ1

D
(
P

γ
XiY

‖Qλ
XiY

)
H(λ) − H(γ )

(4.9)

where γ = (0.5, 0.5). Therefore, the right-hand side of Eq. (4.9) is a lower bound on C(D).
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Figure 4.7 CLB(D) for sensors of varying noise levels and range.

4.2.4 Illustration of Sensing Capacity Bound

We continue the previous example based on the sensor network in Figure 4.4. We compute
the sensing capacity bound CLB(D) in Theorem (4.2.1) for this network. However, we
experiment with various values of noise level and sensor range c. The computed bounds are
shown in Figure 4.7. In Figure 4.7, ‘Noise = p’ indicates that for a sensor, P (Y �= X) = p,
with Y = X assumed. The probability p is assumed equally distributed over the two (one
in the case of x = 0 and x = c) closest values to x. In all cases, CLB(D) approaches 0
as D approaches 0. This occurs because similar target vectors have similar codewords
due to dependence in the codeword distribution, and therefore, more sensor measurements
are required to differentiate among them. The bounds for sensors of varying range and
noise levels reveal tradeoffs among different sensor classes. Some tradeoffs agree with
intuition. For example, sensing capacity increases with decreasing noise levels. However,
other tradeoffs are not as obvious. For example, compare the bound for sensors of range
c = 4 and noise 0.025 with sensors of range c = 6 and noise 0.10. Neither sensor is clearly
better than the other, and the preference for one over another depends on the desired
distortion. For distortion below D = 0.06, the shorter range but lower noise sensor results
in a higher sensing capacity than sensors of longer range but higher noise. The reverse is
true for distortions greater than D = 0.06. Thus, the bound presented in (4.1) expresses a
complex tradeoff between sensor noise, sensor range, and the desired detection accuracy.

It may be interesting to observe the dependence of the sensing capacity bound on the
joint type λ. Figure 4.8 is a contour plot of the ratio in (4.1) that is minimized over λ. Since
λ is constrained by γ = {0.5, 0.5}, it has two free variables λ01, λ10. The segment λ01 + λ10

is the distortion resulting from mistaking vectors of joint type λ as one another. Notice
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Figure 4.8 Computing CLB(D) as a function of λ. The diagonal segment corresponds to
distortion bound D = 0.15.

that the ratio decreases as we move towards the origin. This is the region of low distortion,
which can only be achieved at low rates. However, due to the distortion bound D (the
diagonal black distortion segment) which is allowed to the decoder, only the region above
this segment needs to be considered by the minimization in (4.1), resulting in non-zero
sensing capacity.

Using the loopy belief propagation algorithm in Pearl (1988), we empirically examined
sensor network performance as a function of rate. We generated sensor networks of various
rates by setting the number of targets, and varying the number of sensors. We chose the
number of connections to be c = 4, the distortion to be D = 0.1, and the noise level to be
0.1. The capacity value CLB for the model used in this experiment is 0.62. We empirically
evaluated the error rate averaged over a set of randomly generated target vectors and
sensor networks. Figure 4.9 shows that the error probability decreases as the rate is reduced.
Interestingly, the reduction becomes sharper as k, n are increased (for the given rate), which
supports the ‘phase transition effect’ indicated by the sensing capacity theorem. This phase
transition occurs close to the computed CLB for this network, although the error probability
is still significant below CLB . We conjecture that this occurs because belief propagation is
suboptimal for graphs with cycles, such as the graphs generated using our sensor network
model.

4.3 Extensions to Other Sensor Network Models

Section 4.2 introduced a sensor network model where each sensor is allowed to make arbitrary
connections to the target vector. An analysis of this model culminated in Theorem 4.2.1,
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Figure 4.9 Average empirical error rate of loopy belief propagation-based detection for
varying rates, and the corresponding lower bound.

which provided insight into the large-scale detection problem. In several situations, more
complex sensor network models may be called for, such as those based on localized sensing
functions or more complex target models. This section describes extensions of the sensing
capacity concept to such complex models. We begin with a few straightforward refinements
of the arbitrary connection model. The first refinement considers non-binary target vectors.
Binary target vectors indicate the presence or absence of targets at the spatial positions. A
target vector over a general finite alphabet may indicate, in addition to the presence of targets,
the class of a target. Alternatively, the entries of non-binary vectors can indicate levels of
intensity or concentration. Assuming a target vector over alphabet A, we can define types
and joint types over A, and apply the same analysis as before to obtain the sensing capacity
bound below:

C(D) ≥ CLB(D) = min
λ∑

a �=b λab≥D∑
b λab=γa

D
(
P

γ
XiY

‖Qλ
XiY

)
H(λ) − H(γ )

(4.10)

where γ =
(
γa = 1

|A| , a ∈ A
)

, while λ = (λab, a, b ∈ A) is an arbitrary probability mass
function.

The second refinement allows the following a priori distribution over target vectors
(whereas Section 4.2 did not assume an a priori distribution.) Assume that each target
position is generated i.i.d. with probability PV over the alphabet A. This may model the
fact that targets are sparsely present. The previous analysis can be extended to a Maximum-
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Figure 4.10 A one-dimensional sensor network model with spatially contiguous connec-
tions and k = 7, n = 4, c = 3.

a-Posteriori (MAP) detector, instead of the ML detector considered earlier, resulting in the
following sensing capacity bound:

C(D) ≥ CLB(D) = min
λ∑

a �=b λab≥D∑
b λab=γia

D
(
P

γ i

XiY
‖Qλ

XiY

)
H(λ) − H(γ j ) − D(γ j‖PV )

(4.11)

where γ i = PV , λ = (λab, a, b ∈ A) is an arbitrary probability mass function and γ j is
the marginal of λ calculated as γjb = ∑

a λab.
A third extension accounts for heterogenous sensors, where each class of sensor possibly

has a different range c, noise model PY |X , and/or sensing function �. Let the sensor of
class l be used with a given relative frequency αl . For such a model, the sensing capacity
bound is as follows:

C(D) ≥ CLB(D) = min
λ∑

a �=b λab≥D∑
b λab=γia

∑
l αlD

(
P

γ i ,l

XiY
‖Qλ,l

XiY

)
H(λ) − H(γ j ) − D(γ j‖PV )

(4.12)

where γ i = PV , λ = (λab, a, b ∈ A) is an arbitrary probability mass function and γ j is
the marginal of λ calculated as γjb = ∑

a λab.

4.3.1 Models with Localized Sensing

The sensor network model with arbitrary connections depicted in Figure 4.4 does not cap-
ture the geometrical properties of many classes of sensors. For example, a seismic sensor
receives vibrations from nearby targets only. A camera can only image a contiguous portion
of space.

In Rachlin et al. (2005) and Rachlin (2007), we analyzed the sensing capacity of a one-
dimensional sensor network model that captures contiguity in sensor connections. In this
work, we assumed a one-dimensional target array, such as positions along the perimeter of
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Figure 4.11 A two-dimensional target grid with spatially contiguous sensor observations.
The state of the environment is modeled as a Markov random field.

a wall. An example of this model is shown in Figure 4.10. In Figure 4.10, sensors observe
a contiguous set of three target positions and output an arbitrary function � of the target
positions they observe. For example, a sensor could output a weighted sum of the targets
they observe, such as in the case of infrared temperature sensors.

The analysis of the contiguous connections model in one dimension requires the appli-
cation of ‘c-order types’. The c-order type of a target vector is the fraction of occurrences
of each possible sub-string of length c in the target vector. For example, for a binary tar-
get vector and c = 2, the c-order type is defined as γ = (γ00, γ01, γ10, γ11). Here, γab is
the fraction of occurrences of the string ‘ab’ in the target vector. The primary difference
in analyzing the sensing capacity of the contiguous connections model arises due to the
use of c-order types instead of types, which requires different counting arguments. The
basic method of proving the sensing capacity bound, however, is similar to the case of the
arbitrary connections model.

In Rachlin (2007), we extend our analysis of contiguous connections models to two-
dimensional target and sensor configurations. In this case, the set of target positions can be
represented by a matrix instead of a target vector. An example of such a network is shown
in Figure 4.11. Such a model can model applications such as surveillance of an area by
seismic or camera sensors. The analysis of this model requires the use of two-dimensional
types. These types enumerate the fraction of occurrences of all possible two dimensional
patterns of a given size, similar to the c-order type in the one-dimensional case.

4.3.2 Target Models

Section 4.2 which introduced sensing capacity did not assume any prior distribution on
the target vectors. The extensions to this model that considered an a priori distribution
modeled the target positions as i.i.d. with probability distribution PV . In Rachlin (2007),
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Figure 4.12 Sensor network model for a sequence of dependent target vectors.

we considered extensions to target models that allow for correlation between the target
positions. In that work, the state of the environment is modeled as a two-dimensional
Markov random field. Such a model can be used to capture spatial structure, such as target
clustering, as would occur in a surveillance application with groups of people. The analysis
of the Markov random field model requires the introduction of field-types which specify
the probability of a field. These depend on the target distribution and are distinct from the
types and c-order types which depend on sensor connections.

Many large-scale detection applications require a sensor network (Figure 4.12) to mon-
itor an environment whose state varies over time. Examples include pollution, traffic, and
agricultural monitoring, and surveillance. In Rachlin et al. (2006c), we analyzed the sensing
capacity of a sensor network that observes a sequence of dependent states of the environ-
ment. Each target position was assumed to independently evolve as a Markov chain over
time. The analysis of this model requires the use of temporal-types, which specify the
probability of a sequence of target vectors, based on the Markov chain.

4.4 Conclusion

The results presented in this chapter provide limits on the performance of sensor networks
for large-scale detection problems. The notion of sensing capacity indicates that it should be
possible to obtain arbitrarily good performance (to within the distortion constraint) so long
as the number of sensors used is proportional to the scale of the sensing problem (the num-
ber of target positions), with the correct proportionality factor. As importantly, this chapter
demonstrates a close connection between sensor networks and communication channels.
It is tantalizing to consider that one could transpose the large body of results available
on communication channels, into the sensor network setting. For example, channel coding
theory contains a large number of results that are used to build practical communication
systems. Can we build on our analogy to communication channels to bring insights from
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coding theory into the design of sensor networks? As a first step, in Rachlin et al. (2006a,b)
and Rachlin (2007) we proposed extending ideas from convolutional coding to sensor net-
works. We demonstrated that a version of sequential decoding (which is a low complexity
decoding heuristic for convolutional codes) can be applied to detection in sensor networks,
as an alternative to the complex belief propagation algorithm. Our empirical results indi-
cate that above a certain number of sensor measurements, the sequential decoding algorithm
achieves accurate decoding with bounded computations per bit (target position). This empir-
ical result suggests the existence of a ‘computational cut-off rate’, similar to one that exists
for channel codes.

We believe that the current state of the art on the theory of sensing capacity merely
scratches the surface of a large set of problems on large-scale detection. A host of interest-
ing and useful directions can be followed to explore this field. The most obvious direction
is to strengthen the theory by considering alternative settings of the problem, tightening
the sensing capacity bounds, and proving a converse to sensing capacity. Another direc-
tion is to explore the connection between sensor networks and communication channels,
including the exploitation of existing channel codes to design sensor networks (or provide
heuristics for such design). A third direction involves questions about sensor selection and
sensor design for practical applications, guided by the notion of sensing capacity. In the
authors’ experience, the technical specifications of off-the-shelf commercial sensors are not
directly amenable to performance analysis in a large-scale detection setting. For example,
the published specification of an infrared temperature sensor characterizes it assuming a
single target in its field of view. In a large-scale detection setting, where the sensor may
possibly see multiple targets, the specification does not provide a model for sensor behav-
ior. Hopefully, engineering ideas about sensor design, selection, and specification can be
re-examined based on the insights obtained from the theory of sensing capacity.
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5

Law of Sensor Network Lifetime
and Its Applications

Yunxia Chen and Qing Zhao

5.1 Introduction

The performance measure of network lifetime is particularly relevant to sensor networks
where battery-powered, dispensable sensors are deployed to collectively perform a certain
task. For a communication network, which is generally designed to support individual users,
network lifetime is subject to interpretation; a communication network may be considered
dead by one user while continuing to provide required quality of service (QoS) for others.
In contrast, a sensor network is not deployed for individual nodes, but for a specific collab-
orative task at the network level. The lifetime of a sensor network thus has an unambiguous
definition: it is the time span from the deployment to the instant when the network can no
longer perform the task.

Network lifetime is crucial to large-scale sensor networks since in many applications,
it is undesirable or infeasible to replace or recharge sensors once the network is deployed.
Much has been said about maximizing sensor network lifetime. The lack of an accurate
characterization of network lifetime as a function of key design parameters, however,
presents a fundamental impediment to optimal protocol design. Given that network lifetime
depends on network architectures, specific applications, and various parameters across the
entire protocol stack, existing techniques tend to rely on either a specific network setup or
the use of upper bounds on lifetime. As such, it is difficult to develop a general design
principle.

Wireless Sensor Networks: Signal Processing and Communications Perspectives A. Swami, Q. Zhao, Y.-W. Hong and L. Tong
Ò 2007 John Wiley & Sons, Ltd
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In this chapter, we show that there is, in fact, a simple law that governs network life-
time for all applications, under any network configuration (Chen and Zhao 2005). This
law of lifetime not only identifies two key physical layer parameters that affect network
lifetime, but also reveals a general design principle for lifetime maximization. An example
of applying this law of lifetime to MAC design is provided. Specifically, we first obtain the
limiting performance on network lifetime achieved by centralized scheduling that optimally
exploits the two key physical layer parameters. We then demonstrate that, by applying the
general design principle revealed by the law of lifetime, we can obtain a simple distributed
scheduling protocol that asymptotically achieves the limiting performance defined by cen-
tralized scheduling. A brief overview of existing analytical work on network lifetime is
also provided to give a more complete picture on recent advances in this area.

5.2 Law of Network Lifetime and General Design
Principle

In this section, we present the law of lifetime, which provides an exact characterization of
network lifetime under a general network setting. Based on this law of lifetime, we obtain
a general principle for any lifetime-maximizing design.

5.2.1 Network Characteristics and Lifetime Definition

Major network characteristics that affect network lifetime include network architecture,
energy consumption model of sensor nodes, and data collection mode and lifetime definition
determined by the underlying application. Below, we take a closer look at these network
characteristics to identify factors affecting network lifetime.

Sensor network architecture

Three types of sensor network architecture have been considered in the literature: flat
ad hoc, hierarchical, and SEnsor Network with Mobile Access (SENMA). Under the flat
ad hoc architecture, sensors collaboratively relay their data to access points (a.k.a. base
stations or sinks). In hierarchical networks, sensors are organized into clusters, and cluster
heads (a.k.a. relay nodes) are responsible for collecting and aggregating data from sensors
and then reporting to access points (APs). In SENMA, sensors communicate directly with
mobile APs moving around the sensor field. Transmissions from sensors to APs are typically
multi-hop in the flat ad hoc networks, single-hop in SENMA, single-hop within clusters
and multi-hop between clusters in the hierarchical networks.

Data collection initiation

According to network applications, the data collection process in a sensor network can be
initiated by the internal clock of sensors, the event of interest, or the demand of the end-
user. In clock-driven networks, sensors collect and transmit data at pre-determined time
intervals. In event-driven or demand-driven networks, data collections are triggered by an
event of interest or a request from APs.
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Energy consumption model

The energy consumption model characterizes the sources of energy consumption in a
network. According to the rate of energy expenditure, we classify the network energy con-
sumption into two general categories: the continuous energy consumption and the reporting
energy consumption. The continuous energy consumption is the minimum energy needed
to sustain the network during its lifetime without data collection. It includes, for example,
the battery leakage and the energy consumed in sleeping, sensing, and signal processing.
The reporting energy consumption is the additional energy consumed in a data collection
process. It depends on the channel model as well as the network architecture and pro-
tocols. In particular, the reporting energy consumption includes the energy consumed in
transmission, reception, and possibly channel acquisition.

Lifetime definition

Network lifetime is the time span from the deployment to the instant when the network is
considered nonfunctional. When a network should be considered nonfunctional is, however,
application-specific. It can be, for example, the instant when a certain fraction of sensors die,
loss of coverage occurs (i.e., a certain portion of the desired area can no longer be monitored
by any sensor), loss of connectivity occurs (i.e., sensors can no longer communicate with
APs), or the detection probability drops below a certain threshold.

5.2.2 Law of Lifetime

The above discussion demonstrates the variety of network parameters that may affect
network lifetime. We show below that, behind the vast differences in communication
environment and network configuration and application, there exists a simple law gov-
erning network lifetime as well as a general design principle applicable to various network
aspects.

Theorem 5.2.1 (Law of network Lifetime) For a sensor network with total non-rechar-
geable initial energy E0, the expected network lifetime E[L], measured as the average
amount of time until the network is considered nonfunctional, is given by

E[L] = E0 − E[Ew]

Pc + λ E[Er ]
, (5.1)

where Pc is the constant continuous power consumption of all sensors in the network, E[Ew]
is the expected wasted energy (i.e., the total unused energy in the network when it dies), λ is
the expected sensor reporting rate defined as the number of data collections per unit time,
and E[Er ] is the expected reporting energy consumed by all sensors in a randomly chosen
data collection.

Proof. See (Chen and Zhao 2005) for details.

The law of lifetime given in Theorem 5.2.1 is proven based on the strong law of large num-
bers. It holds for all network applications under a general setting: arbitrary network archi-
tecture, arbitrary channel and radio models, and arbitrary definition of lifetime. Inspection
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of Eq. (5.1) reveals that reducing the expected reporting energy E[Er ] and the expected
wasted energy E[Ew] leads to a prolonged network lifetime. This observation helps us
identify two key physical layer parameters that affect network lifetime: channel state and
residual energy. Specifically, to reduce E[Er ], a lifetime-maximizing protocol should exploit
the channel state information (CSI) to prioritize sensors with better channels. On the other
hand, to reduce E[Ew], a lifetime-maximizing protocol should exploit the residual energy
information (REI) to favor sensors with more residual energies and thus balance the energy
consumption across the network. Since channel states are independent of residual energies
(the sensor with the better channel may have less residual energy), a lifetime-maximizing
protocol needs to strike a balance between these two often conflicting objectives.

5.2.3 A General Design Principle For Lifetime Maximization

To obtain the optimal tradeoff between CSI and REI, we again resort to the law of lifetime.
Consider first the expected reporting energy consumption E[Er ] in a randomly chosen data
collection. As shown by Chen and Zhao (2005), E[Er ] can be obtained by averaging the
expected reporting energy E[Er(k)] consumed in the kth data collection over the randomly
chosen data collection index K:

E[Er ] = EK{E[Er(K)]}, (5.2)

where EK{·} denotes the expectation over the randomly chosen data collection index K .
Note that the probability mass function Pr{K = k} decreases with the data collection index
k (Chen and Zhao 2005). This observation leads to the conclusion that the energy consumed
at the early stage of network lifetime carries more weight. Thus, reducing the reporting
energy consumption E[Er(k)] in the kth data collection is crucial when k is small (i.e.,
when the network is young). On the other hand, the wasted energy Ew only depends on
sensor residual energies when the network dies. Hence, maintaining small dispersion of
sensor residual energies is only crucial when the network is approaching the end of its
lifetime.

The above discussion suggests that a lifetime-maximizing protocol should be adaptive
with respect to the age of the network. Specifically, lifetime-maximizing protocols should
be more opportunistic by favoring sensors with better channels (focusing on reducing
E[Er ]) when the network is young and more conservative by favoring sensors with more
residual energies (focusing on reducing E[Ew]) when the network is old. We see here
a connection between extending network lifetime and the retirement-planning strategy.
When we are young, we can afford to be more aggressive, putting retirement savings to
relatively more risky investments. As we age, we become more conservative. Since the
law of lifetime holds under a general network setting, this general principle can be used to
guide the design of various lifetime-maximizing protocols including MAC, routing as well
as network configuration.

5.3 Fundamental Performance Limit: A Stochastic
Shortest Path Framework

We now present an example of applying the law of lifetime to MAC design. As shown in
Figure 5.1, we consider sensor networks with mobile APs which can be UAVs, UGVs, and
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En

Cn

Figure 5.1 Sensor network with mobile access point. Cn: channel gain; En: residual energy.

robotics. Due to node redundancy and spatial correlation among sensor measurements, it is
often sufficient to retrieve data from a fraction of sensors. Transmission scheduling is thus
a key issue in sensor networks: which set of sensors should be chosen to transmit their
measurements so that the network can carry out its task for the longest period of time.

In this section, we explore the fundamental performance limit of sensor transmission
scheduling within the stochastic shortest path (SSP) framework. We show that the limiting
performance on network lifetime is defined by the optimal policy of an SSP problem. We
further show that the rich structure of the sensor scheduling problem leads to a polynomial-
time solution to this SSP when the network is dense.

5.3.1 Problem Statement

Network model

Consider a network of N sensors. In each data collection initiated by the AP, N0 (1 ≤
N0 ≤ N ) out of N sensors are chosen to transmit their measurements directly to the AP
through a fading channel. The number N0 of sensors required to transmit is determined
by the underlying application and the QoS requirement of the network. For simplicity, we
assume N0 = 1. Extensions to N0 > 1 are discussed in (Chen and Zhao 2007; Chen et al.
2007).

We assume that sensor measurement is encoded in a packet with fixed size. The channels
between the AP and the sensors follow the block fading model with block length equal to
the transmission time of one packet. That is, channel gains are independently and identically
distributed (i.i.d.) across data collections (but not necessarily i.i.d. across sensors).

Energy model

We assume that sensors can adjust their transmission power according to the channel
condition to ensure successful reception at the AP. Let Wn denote the energy required
for sensor n to successfully transmit its packet to the AP in a data collection. Due to the
presence of small-scale fading, the required transmission energy Wn is a random variable
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determined by the current channel state associated with sensor n. Since channel gains are
i.i.d. across data collections, the required transmission energies W are i.i.d. across data
collections. In general, the better the channel, the lower the required transmission energy.
In practice, sensors can only transmit at a finite number L of power levels due to hardware
and power limitations. Hence, the transmission energy Wn has realizations restricted to a
finite set W

W �={ε1, ε2, . . . , εL}, 0 < ε1 < . . . < εL < ∞, (5.3)

where εk is the energy consumed by a sensor in transmitting at the kth power level in a
data collection.

Assume that each sensor is powered by a non-rechargeable battery with initial energy
E0. Let En denote the residual energy of sensor n at the beginning of a data collection.
Depending on the channel conditions and the sensor selections in previous data collections,
the residual energy En of a sensor is a random variable. Since the transmission energy
Wn is restricted to the finite set W , the residual energy En takes values from a finite
set E :

E �=
{

e : e = E0 −
L∑

k=1

αkεk ≥ 0 for some αk ∈ Z and αk ≥ 0

}
. (5.4)

Lifetime definition

According to the required transmission energy Wn and the residual energy En at the begin-
ning of a data collection, sensor n can be in one of the following states: active, inactive,
and dead. Sensor n is considered active if it has enough energy for transmission in the
current data collection, i.e., En ≥ Wn. Sensor n is considered dead if its residual energy
En drops below the minimum required transmission energy ε1. In other words, it does not
have enough energy for transmission under any channel condition. If sensor n has residual
energy higher than ε1 but insufficient for the current transmission (ε1 ≤ En < Wn), then it
is considered inactive in the current data collection.

In each data collection, an active sensor is scheduled for transmission. If there is no
active sensor in the network, this data collection is considered invalid. We define network
lifetime L as the number of data collections until the number of dead sensors in the network
reaches a certain threshold NT (1 ≤ NT ≤ N ). We also assume that the network lifetime
terminates when an invalid data collection occurs. This condition on lifetime allows us to
ignore the tail portion of the network lifetime when sensors only have enough energy for
exceptionally good channel states. In this case, data collection may suffer from large delay.
All results presented below, however, can be extended straightforwardly without posing
this condition on network lifetime.

5.3.2 SSP Formulation

We show that the problem of dynamically choosing which sensor to communicate with the
AP for maximum network lifetime can be formulated as an SSP problem, a special class of
Markov decision process (MDP) with non-discounted rewards and inevitable terminating
states.
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Network state space

The law of lifetime reveals the key role of residual energy and channel state in the design of
upper layer protocols. We thus characterize the network state by the network energy profile

E �= (E1, . . . , EN) and the sensor transmission energy requirement W �= (W1, . . . , WN). The
state space S is given by

S �={(e, w) : e �= [e1, . . . , eN ] ∈ EN, w �= [w1, . . . , wN ] ∈ WN }. (5.5)

The size of the state space grows exponentially with network size N : |S| = MNLN where
M = |E | and L = |W| denote, respectively, the number of possible residual energies and
power levels.

The network enters a terminating state when its lifetime expires. According to the
network lifetime definition, we define the set of terminating states St ⊂ S as

St
�={(e, w) : |{n : en < ε1}| ≥ NT or en < wn, ∀n}, (5.6)

where |{n : en < ε1}| ≥ NT indicates that the number of dead sensors in the network reaches
threshold NT , and en < wn, ∀n, indicates that there is no active sensor in the network, i.e.,
an invalid data collection occurs.

Action space

At the beginning of each data collection, an active sensor is chosen, based on the current
network state (e, w), to communicate with the AP. The action space can thus be defined as

A(e, w)
�={n : n ∈ {1, . . . , N}, en ≥ wn}. (5.7)

Controlled Markovian dynamics

At the end of each data collection, the network transits to a new state according to the
sensor selection and the channel states. Let Pn(e′, w′|e, w) denote the probability that the
network state transits from (e, w) to (e′, w′) after sensor n is chosen. Since terminating
states are absorbing, we have Pn(e, w|e, w) = 1 if (e, w) ∈ St . In each data collection, only
the residual energy of the scheduled sensor n changes according to its transmission energy
while other sensors’ residual energies remain the same. Hence, the transition probability
after sensor n is chosen can be written as

Pn(e′, w′|e, w) = p(w′)1[e′=e−Inwn], if (e, w) ∈ S\St , (5.8)

where In is a 1 × N unit vector whose nth element is 1, and p(w′) = Pr{W = w′} is the
probability mass function (PMF) of the sensor transmission energy requirement W, which
is determined by the channel fading statistics for a given set W of transmission energy
levels.
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Figure 5.2 Stochastic shortest path formulation of sensor scheduling: N = 2.

Example: Figure 5.2 illustrates a network comprising of two sensors (N = 2). The net-
work state transits from (E0, E0, w1, w2) to (E0 − w1, E0, w′

1, w′
2) with probability p(w′) if

sensor n = 1 is chosen in the first data collection; it transits to state (E0, E0 − w2, w′
1, w′

2)

with probability p(w′) if sensor n = 2 is chosen. The bottom ellipse in Figure 5.2 indicates
the set St of terminating states. The fact that sensor batteries have finite initial energy and
that each transmission consumes non-zero energy implies that the network always reaches
a terminating state in a finite but random time. The inevitable termination makes the sensor
scheduling problem an instance of an SSP problem whose design objective is to maximize
the total expected reward before a terminating state is reached.

Transmission reward

Maximizing the expected network lifetime is equivalent to assigning a unit reward to
each data collection until the network dies after which no reward is earned. Accordingly,
given network state (e, w), we define the instantaneous reward obtained in this data col-
lection as

R(e, w)
�= 1[(e,w)∈S\St ], (5.9)

where 1[x] is the indicator function. Hence, the total reward accumulated until the network
reaches a terminating state in St represents network lifetime.

SSP formulation

We have formulated the sensor transmission scheduling problem as an SSP. A transmission
scheduling protocol is thus a policy π of this SSP. A policy π is given by a sequence
of functions π = {µ1, µ2, . . . , } where µk : S → {1, . . . , N} specifies the sensor chosen in
the kth data collection. If µk is identical for all k, π is a stationary policy.

5.3.3 Fundamental Performance Limit on Network Lifetime

Let V ∗ : S → R denote the value function, where V ∗(e, w) represents the maximum
expected network lifetime (i.e., the maximum total expected reward of the SSP problem)
starting from state (e, w). It has been shown that the value function is the unique solution
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to Bellman’s optimality equation (Bertsekas 1995):

V ∗(e, w) = R(e, w) + max
n∈A(e,w)

 ∑
(e′,w′)∈S

Pn(e′, w′|e, w)V ∗(e′, w′)

 . (5.10)

Since terminating states are absorbing states with a zero reward, the maximum expected
lifetime starting from a terminating state is zero, i.e., V ∗(e, w) = 0 if (e, w) ∈ St .

The fundamental performance limit on network lifetime can be obtained as

E[Lopt ] =
∑
w∈W

p(w)V ∗(E0I, w), (5.11)

where E0 is the initial energy of each sensor, and I is a 1 × N vector of all ones. A
stationary optimal transmission scheduling policy that achieves this limiting performance
E[Lopt ] is given by

µ(e, w) = arg max
n∈A(e,w)

 ∑
(e′,w′)∈S

Pn(e′, w′|e, w)V ∗(e′, w′)

 . (5.12)

Clearly, if we obtain the maximum expected lifetime V ∗(e, w) for all network states, both
the limiting performance E[Lopt ] and the optimal policy can be readily computed. The
optimal design of transmission scheduling thus hinges on an efficient computation of the
value function given in (5.10).

The value iteration algorithm is a widely used iterative procedure to solve the optimality
equation (Bertsekas 1995, p.303). Specifically, we initialize the value iteration algorithm at
V0(e, w) = 0 for all (e, w) ∈ S. In the kth iteration, we calculate value function Vk(e, w)

for all non-terminating network states (e, w) ∈ S\St as

Vk(e, w) = R(e, w) + max
n∈A(e,w)

 ∑
(e′,w′)∈S

Pn(e′, w′|e, w)Vk−1(e′, w′)

 . (5.13)

It has been shown in (Bertsekas 1995) that the value iteration algorithm always con-
verges, i.e.,

V ∗(e, w) = lim
k→∞

Vk(e, w). (5.14)

Unfortunately, it generally requires an infinite number of iterations to converge (Bertsekas
1995). Furthermore, in each iteration, the computational complexity (measured as the num-
ber of multiplications) is quadratic in the number |S\St | of non-terminating states and
linear in the number |A(e, w)| of actions (as can be seen from (5.13)). Hence, the com-
plexity of computing the value function V ∗ is on the order of N(LM)2N per iteration,
which increases exponentially with network size N .

5.3.4 Computing the Limiting Performance with Polynomial
Complexity in Network Size

By exploiting the underlying structure of the sensor scheduling problem, we can signifi-
cantly reduce the computational complexity of the value iteration algorithm. We first show
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that for the scheduling problem, the value iteration algorithm converges in one iteration. We
then reduce the computational complexity of this iteration from exponential to polynomial
in network size when the network is dense.

Acyclic transition graph

Due to the fact that the total residual energy in the network decreases after each data
collection, we can obtain the value function in one iteration by calculating (5.10) in an
increasing order of the network energy.

Proposition 5.3.1 For any transmission scheduling policy, the transition graph of the under-
lying Markov chain is acyclic. As a consequence, the value function V ∗ can be obtained in
one iteration.

Proof. See (Chen et al. 2007).

Sparse transition matrix

Next, we focus on reducing the computational complexity of Bellman’s optimality equation
(5.10) by reducing the size of the state space. We note from (5.8) that the transition matrix
is sparse. Substituting (5.8) into (5.10), we obtain the optimality equation as

V ∗(e, w) = R(e, w) + max
n∈A(e,w)

{∑
w′

p(w′)V ∗(e − Inwn, w′)

}
. (5.15)

Note that the summation in the curly parenthesis of (5.15) is taken over |W|N = LN trans-
mission energy requirements while that of (5.10) is taken over |S| = (LM)N network states.
Hence, the computational complexity of the value function is reduced from O(N(LM)2N)

to O(NL2NMN).

Uncontrollable non-correlated channel states

Recall that a network state (e, w) consists of two components: the network energy profile
e and the required transmission energy w. The transition of e is affected by the chosen
action, but the transition of w is not since w is determined solely by channel fading statistics.
Define a new value function V̂ : EN → R, where V̂ (e) represents the maximum expected
lifetime starting from network energy profile e:

V̂ (e) =
∑
w

p(w)V ∗(e, w). (5.16)

Averaging (5.15) over all possible transmission energies W, we obtain a modified Bellman’s
optimality equation for V̂ as

V̂ (e) =
∑
w

p(w)

{
R(e, w) + max

n∈A(e,w)
V̂ (e − Inwn)

}
. (5.17)

Since the new value function V̂ is executed over the space of e, its computational complexity
is O(NLNMN).
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In terms of the new value function V̂ , the limiting performance is given by

E[Lopt ] = V̂ (E0I), (5.18)

and the corresponding optimal scheduling policy can be calculated as

µ(e, w) = arg max
n∈A(e,w)

V̂ (e − Inwn). (5.19)

Invariance to sensor permutation

The above results hold for any channel distribution. We can further simplify the calculation
of the maximum expected lifetime when the channel distribution satisfies certain conditions.

Suppose that the joint distribution p(w) of the transmission energy requirements W is
invariant to sensor permutations, i.e., p(w) = p(w̃) if w̃ is a permutation of w. Note that
this condition is satisfied when the channel fading is i.i.d. across sensors. From (5.16),
we can show that V̂ (e) = V̂ (ẽ) if ẽ is also a permutation of e, or equivalently ẽ and e
have the same pattern. Hence, we only need to compute the value function V̂ for different
patterns of network residual energy profile e rather than all possible e. Since the number of
e patterns is polynomial O(NM−1) in network size, we reduce the complexity of computing
the maximum expected lifetime from O(NLNMN) as in (5.17) to O(NMLN) with respect
to the network size N .

Spatial aggregation

In dense networks, closely-spaced sensors may experience approximately the same channel
fading. According to sensor locations, we can classify sensors into Ñ � N spatial clus-
ters such that the transmission energy requirement is identical for all sensors within the
same spatial cluster. As a consequence, the number of all possible transmission energy
requirements is reduced from LN to LÑ . Assuming that the distribution of transmission
energy requirements W is invariant to cluster permutations, we find that the computational
complexity of the maximum expected lifetime can be reduced to O(NMLÑ) = O(NM) in
network size N if the number Ñ of clusters is independent of the network size N , which
holds in dense networks deployed over fixed geographic areas.

Summary of complexity reduction

In Table 5.1, we summarize the computational complexity of the maximum expected life-
time. By exploiting the special structures of the sensor transmission scheduling problem,
we show that the value iteration algorithm converges in one iteration. For dense networks
deployed over fixed geographic areas, we reduce the computational complexity from expo-
nential to polynomial in network size.

5.4 Distributed Asymptotically Optimal Transmission
Scheduling

A direct implementation of the optimal scheduling policy (5.19) obtained from the SSP for-
mulation requires global information of channel state and residual energy, resulting in large
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Table 5.1 Computational complexity of the limiting lifetime performance.

Special structure Iterations Complexity per Iteration in N

General SSP problem ∞ O(N(LM)2N)

Acyclic transition graph 1 O(N(LM)2N)

Sparse transition matrix 1 O(NL2NMN)

Uncontrollable non-correlated channel state 1 O(NLNMN)

Invariance to sensor permutation 1 O(NMLN)

Spatial aggregation 1 O(NM)

N : number of sensors, L: number of power levels, M: number of possible residual energies.

implementation overhead. In this section, we develop distributed scheduling algorithms that
exploit local CSI and REI to reduce implementation overhead while retaining the benefit
of cross-layer optimization. The basic idea is to allow each sensor to determine, based on
its own channel state and residual energy, whether to transmit in each data collection.

5.4.1 Dynamic Protocol for Lifetime Maximization

To formulate the design of distributed transmission scheduling protocols, we introduce
the concept of energy-efficiency index (Chen and Zhao 2007). At the beginning of a data
collection, every sensor n is assigned with an energy-efficiency index γn, which is a function
of its required transmission energy Wn and residual energy En:

γn = g(Wn, En), (5.20)

where g is a real-valued function. The active sensor with the largest energy-efficiency
index is then scheduled for transmission using the distributed opportunistic carrier sensing
scheme (see Section 5.4.4 for details). The distributed transmission scheduling design is
thus reduced to the design of the energy-efficiency index. For example, if γn = −Wn, we
have a pure opportunistic protocol, which enables the active sensor with the least required
transmission energy (i.e., the best channel). Similarly, γn = En leads to a pure conservative
protocol, which schedules the active sensor with the most residual energy.

We point out that it is possible to have a time-varying definition of the energy-efficiency
index, i.e., γn = gk(Wn, En) where k denotes the kth data collection. Here, we focus on
time-invariant function g for its ease of implementation. We will show that protocols defined
by a time-invariant energy-efficient index can still be dynamic with respect to the age of
the network.

Following the general design principle derived from the law of lifetime, we propose a
dynamic transmission scheduling protocol that adaptively trades off CSI with REI according
to the age of the network. Referred to as DPLM, the proposed protocol selects the active
sensor whose current channel state demands the least portion of its residual energy for the
transmission. The energy-efficiency index of DPLM is defined as

γn = En

Wn

. (5.21)

That is, the sensor that is able to transmit the most number of times under the current channel
condition is scheduled for transmission in this data collection. Note that if the sensor with
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the largest energy-efficiency index defined in (5.21) is inactive, i.e., maxn{γn} < 1, then no
sensor in the network is active, resulting in an invalid data collection.

5.4.2 Dynamic Nature of DPLM

Before investigating the properties of DPLM in a general setting, let us first consider a
simple example to gain some intuitions into the dynamic nature of DPLM. Consider a
network with two sensors. Suppose that the network energy profile at the beginning of a
data collection is given by E = (e1, e2). Without loss of generality, we assume that e1 > e2.
The absolute dispersiveness between sensor residual energies is given by � = e1 − e2. It
can be readily shown from (5.21) that sensor 2, the one with less energy, is selected when

γ2 > γ1 ⇒ W1 − W2

W1
>

�

e1
. (5.22)

Note that the required transmission energy Wn decreases as the channel condition improves.
Hence, for a given difference � in the energy profile, the relative improvement in channel
condition required for selecting the sensor that has less residual energy decreases with e1,
which can be considered as a measure of the network age since the total network energy is
given by 2e1 − �. Consider the following two extreme cases. When e1 approaches infinity,
we have lime1→∞ �

e1
= 0 and the condition (5.22) reduces to W2 < W1. That is, when

there is plenty of energy in the network (the network is young), DPLM acts like the pure
opportunistic protocol by selecting the sensor with the best channel (i.e., the least required
transmission energy). On the other hand, when e1 approaches zero (the network is old),
we have lime1→0

�
e1

= ∞ and condition (5.22) holds with probability 0. DPLM puts more
weight on the REI by selecting the sensor with the most residual energy (specifically, sensor
1). This dynamic nature of DPLM is analytically characterized in Property 1.

Property 1 (Dynamic Nature of DPLM) DPLM dynamically trades off CSI with REI
according to the network age measured by the total energy

∑N
n=1 En in the network. Specif-

ically, let I ∗ = arg maxn

{
En

Wn

}
denote the index of the sensor with the largest energy-

efficiency index defined for DPLM. Given the network residual energy profile E = e at the
beginning of a data collection, we have, ∀ε > 0,

Pr{WI∗ = Wmin |E = e} ≤ Pr{WI∗ = Wmin |E = e + ε}, (5.23a)

Pr{eI∗ = emax |E = e} ≥ Pr{eI∗ = emax |E = e + ε}, (5.23b)

where Pr{WI∗ = Wmin |E = e} and Pr{eI∗ = emax |E = e} denote the conditional probabil-

ities that sensor I ∗ has the least required transmission energy Wmin
�= min{Wn}Nn=1 and the

most residual energy emax
�= max{en}Nn=1, respectively.

Proof. See (Chen and Zhao 2007) for details.

Property 1 shows that the probability of choosing the sensor with the best channel increases
while the probability of choosing the sensor with the most residual energy decreases with
the total energy in the network. In other words, when the network is young, DPLM is more
likely to choose the sensor with the best channel to reduce the reporting energy. When
the network grows old, DPLM becomes more conservative in order to reduce the wasted
energy when the network dies.
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5.4.3 Asymptotic Optimality of DPLM

It has been shown that the optimal transmission scheduling policy under the unconstrained
formulation is the pure opportunistic scheme which enables the sensor with the best chan-
nel realization to transmit (Knopp and Humblet 1995; Zhao and Tong 2005). One would
expect that the optimal transmission scheduling policy under the constrained formulation
approaches the pure opportunistic scheme when the constraint on the initial energy becomes
less restrictive, i.e., E0 → ∞. In Property 2, we prove this statement and characterize the
maximum rate at which the network lifetime increases with the initial energy E0. We then
show in Property 3 that DPLM is asymptotically optimal. Specifically, in the asymptotic
regime, DPLM approaches the pure opportunistic scheme and its relative performance loss
as compared to the limiting performance diminishes.

Property 2 (Asymptotic Behavior of the Optimal Transmission Scheduling Protocol)
Assume that the channel states are i.i.d. across data collections and across sensors.

P2.1 Under the unconstrained formulation, the expected reporting energy consumption of
the pure opportunistic scheme in a data collection is given by

Emin = E [Wmin] (5.24)

where Wmin
�= min{Wn}Nn=1 is the minimum of N i.i.d. random variable {Wn}Nn=1.

The optimal transmission scheduling policy in terms of network lifetime approaches
the pure opportunistic scheme as the initial energy goes to infinity. Specifically, the
asymptotic expected reporting energy consumption E[Eopt

r ] of the optimal policy in a
randomly chosen data collection is given by

lim
E0→∞

E[Eopt
r ] = Emin. (5.25)

P2.2 The asymptotic rate at which the limiting performance E[Lopt ] increases with respect
to the sensor initial energy E0 is given by

lim
E0→∞

E[Lopt ]

E0
= N

Emin
. (5.26)

Proof. See (Chen and Zhao 2007) for details.

The limiting performance E[Lopt ] provides a benchmark for all transmission scheduling
policies (including centralized schemes). As seen from (5.12), to achieve the performance
limit for a finite initial energy E0, we need global rather than local CSI and REI in each
data collection, resulting in large implementation overhead. As shown in Property 3 and
Section 5.4.4, DPLM provides a distributed solution to approaching the performance limit
in the asymptotic regime.

Property 3 (Asymptotic Optimality of DPLM) Assume that the channel states are i.i.d.
across data collections and across sensors. In the asymptotic regime (E0 → ∞),
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P3.1 DPLM approaches the pure opportunistic scheme. Specifically, the expected report-
ing energy consumption E[EDPLM

r ] of DPLM in a randomly chosen data collection
approaches Emin as given in (5.24):

lim
E0→∞

E[EDPLM
r ] = Emin. (5.27)

P3.2 DPLM is asymptotically optimal. Specifically, the relative performance loss of DPLM
as compared to the limiting performance E[Lopt ] diminishes with the initial energy:

lim
E0→∞

E[Lopt ] − E[LDPLM]

E[Lopt ]
= 0, (5.28)

where E[LDPLM] denotes the lifetime achieved by DPLM.

Proof. See (Chen and Zhao 2007) for details.

We point out that other designs (e.g., the pure opportunistic scheme) of energy-efficiency
index γ may also achieve asymptotic optimality. As shown in Figure 5.9, however, DPLM
approaches the limiting performance for small initial energy E0.

5.4.4 Distributed Implementation

We briefly comment on the distributed implementation of DPLM using the opportunis-
tic carrier sensing scheme first proposed in (Zhao and Tong 2003). The basic idea is to
incorporate the local information (i.e., the energy-efficiency index) of each sensor into the
backoff strategy of carrier sensing. This opportunistic carrier sensing scheme provides a
distributed solution to the general problem of finding the global maximum or minimum.

At the beginning of each data collection, the AP broadcasts a beacon signal to activate
and synchronize all sensors in the area of current interest. Upon receiving the beacon signal,
each sensor estimates its channel state (using the beacon signal) and determines the required
transmission energy Wn. Based on Wn and its residual energy En, each sensor calculates the
predefined energy-efficiency index γn. Then, every active sensor maps its energy-efficiency
index γn to a backoff time τn (see Figure 5.3) according to a predetermined common

t = f (g)

tmax

t2

t1

g2 g1 g

Figure 5.3 Opportunistic carrier sensing.
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function f (γ ) and listens to the channel. An active sensor will transmit with its chosen
backoff delay τn if and only if no one transmits before its backoff time expires. If f (γ )

is chosen to be a strictly decreasing function of the energy-efficiency index γ as shown
in Figure 5.3, this opportunistic carrier sensing will ensure that the active sensor with the
largest energy-efficiency index max{γn}Nn=1 seizes the channel.

5.4.5 Simulation Studies
We compare the performance of the proposed DPLM with the following four distributed
transmission scheduling schemes: (1) the layered approach, which assumes that sensors are
indistinguishable at the physical layer and randomly chooses an active sensor in each data
collection; (2) the pure opportunistic protocol, which exploits solely CSI by choosing the
active sensor with the best channel; (3) the pure conservative protocol, which uses only
REI by choosing the active sensor with the most residual energy; and (4) the max-min
protocol, a heuristic design proposed in (Chen and Zhao 2005), which jointly exploits CSI
and REI by choosing the active sensor with the most residual energy after its transmission,
i.e., it uses energy-efficiency index γn = En − Wn.

We assume perfect carrier sensing and ignore the energy consumed in carrier sensing,
which is common to all protocols considered here. Normalizing the energy quantities by
the received signal energy required to achieve the targeted SNR at the AP, we model the
required transmission energy Wn as

Wn = Ec + Ees + 1

Cn

, (5.29)

where Ec = 0.01 is the transmitter circuitry consumption, Ees = 0.001 is the energy required
for a sensor to estimate its channel realization, and Cn is the square of the fading amplitude.
We assume that the channel state Cn follows an exponential distribution (i.e., Rayleigh fad-
ing) with normalized mean E[Cn] = 1. The channel states are i.i.d. across data collections
and across sensors. We also assume that sensors can transmit at continuous power levels.
A sensor with residual energy en is considered dead if it does not have enough energy for
transmission in 99.995% of the time, i.e., Pr{en < Ec + Ees + 1

Cn
} ≥ 99.995%. The lifetime

is defined as the number of data collections until any sensor in the network dies.

Impact of network size

We first study the expected network lifetime E[L] as a function of the number N of sensors.
As shown in Figure 5.4, the network lifetime E[L] increases with N , but the rate at which
E[L] increases saturates. As expected, the layered approach, which ignores diversities at the
physical layers of sensors, performs the worst. Transmission scheduling protocols exploiting
CSI (such as the pure opportunistic scheme, the max-min scheme, and DPLM) outperform
those without CSI (such as the layered approach and the pure conservative scheme). By
jointly exploiting CSI and REI, the max-min protocol outperforms the pure opportunistic
protocol when the number of sensors is large. It is, however, static to the network age as
shown in (Chen and Zhao 2007). Adaptive to the network age, DPLM achieves the best
performance, and its performance gain increases with the number of sensors.
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Figure 5.4 The expected network lifetime E[L]. E0 = 5.

In Figure 5.5, we investigate the expected energy E[WI∗ ] consumed by the chosen
sensor I ∗ of different transmission scheduling protocols exploiting CSI and compare them
with the asymptotic lower bound Emin given in (5.24). Due to multiuser diversity (Knopp
and Humblet 1995), the expected sensor energy consumption E[WI∗] in a randomly cho-
sen data collection decreases with the number N of sensors. Not surprisingly, the pure
opportunistic protocol, solely focusing on minimizing the transmission energy, performs
the best in terms of E[WI∗ ] and achieves Emin even when the initial energy E0 is small.
As the initial energy E0 increases, the expected reporting energy E[W DPLM

I∗ ] of DPLM
decreases and quickly approaches Emin, confirming P3.1. A small E0 that allows a sen-
sor to transmit, on the average, only 10 times in its lifetime seems to be sufficient to
bring E[W DPLM

I∗ ] close to Emin. We point out that the expected energy consumption of the
pure opportunistic protocol under the constrained formulation may be larger than Emin

especially when N is small. This is because when the sensor with the best channel is
inactive, the pure opportunistic protocol will have to choose an active sensor with a
worse channel realization. DPLM, by balancing the energy consumption among sensors
and thus enlarging the set of active sensors, can even outperform the pure opportunistic
scheme in E[WI∗ ] when N is small. Compared to the pure opportunistic approach and
DPLM, the max-min protocol performs the worst in terms of reporting energy consump-
tion.
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Figure 5.5 The expected energy E[WI∗ ] consumed by the chosen sensor I ∗ in a randomly
chosen data collection. E0 = 5, 10.

Figure 5.6 investigates the expected wasted energy E[Ew] of different transmission
scheduling protocols. As the number N of sensors increases, E[Ew] of all protocols
increases. The max-min protocol and DPLM offer significant reduction in the expected
wasted energy as compared with the pure opportunistic and the pure conservative protocols.
As the initial energy E0 increases, the expected wasted energies E[Ew] of the max-min pro-
tocol and DPLM remain almost the same while those of the pure opportunistic and the pure
conservative protocols increase significantly. Combining Figures 5.5 and 5.6, we see that
DPLM achieves the best balance between reducing reporting energy E[WI∗ ] and reducing
E[Ew]; it consumes nearly minimum energy consumption Emin per data collection without
sacrificing E[Ew]. The reason behind this desired property is the dynamic nature of DPLM
as illustrated below.

Dynamic nature of DPLM

Figure 5.7 shows the expected dynamic range δ = E[max{En}Nn=1 − min{En}Nn=1] of the
network energy profile during the network lifetime. Since different transmission scheduling
protocols may achieve different network lifetime, we normalize the data collection index
by the expected network lifetime of the protocol. The expected dynamic range of the
pure opportunistic scheme grows large toward the end of the network lifetime, resulting
in its poor performance in terms of wasted energy E[Ew] as shown in Figure 5.6. The
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Figure 5.6 The expected wasted energy E[Ew]. E0 = 5, 10.
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Figure 5.8 The probability that DPLM chooses the sensor with the least required trans-
mission energy Wmin = min{Wn}Nn=1 and the probability that it chooses the sensor with the
most residual energy Emax = max{En}Nn=1. N = 10, E0 = 20.

dynamic range of the max-min protocol remains constant during the whole network lifetime.
Adaptive to the network age, DPLM allows large variation in sensors’ residual energies at
the early stage of the lifetime (when reducing the transmission energy is more crucial) and
brings down the dynamic range to as low as that of the max-min protocol toward the end
of the lifetime (when balancing energy consumption among sensors becomes crucial). This
explains how DPLM achieves nearly minimum transmission energy Emin without sacrificing
performance in wasted energy E[Ew].

Figure 5.8 further demonstrates the dynamic nature of DPLM. As the age of the network
increases, the probability that DPLM selects the sensor with the best channel realiza-
tion decreases while the probability of choosing the sensor with the most residual energy
increases.

Asymptotic optimality of DPLM

The asymptotic optimality of DPLM in terms of using CSI was demonstrated in Figure 5.5.
In Figure 5.9, we investigate the relative performance loss of the DPLM and the max-min
protocols as compared to the asymptotic upper bound on network lifetime: NE0

Emin
. We can see

that as the initial energy E0 increases, the relative performance loss of DPLM approaches 0,
which confirms P3.2. Moreover, its convergence rate is fast. For example, when the initial
energy is E0 = 10, i.e., a sensor can transmit, on average, 10 times during its lifetime,
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Figure 5.9 The asymptotic optimality of DPLM in network lifetime. N = 50.

the relative performance loss is as low as 6%. The max-min protocol, however, is not
asymptotically optimal due to its static behavior during the network lifetime.

5.5 A Brief Overview of Network Lifetime Analysis

While numerous protocols and network deployment strategies have been proposed for
network lifetime maximization (Chang and Tassiulas 2004; Chen et al. 2006a; Esseghir
et al. 2005; Hou et al. 2003; Maric and Yates 2005; Mhatre et al. 2005; Pan et al. 2005;
Park and Sahni 2006), analytical studies on network lifetime are few. As various elements
affect network lifetime, including network architectures, applications as well protocols,
exact lifetime characterization is notoriously difficult.

Upper bounds on lifetime have been obtained for a range of network setups. The
most widely-studied network architecture is the flat ad hoc model where sensors collect
data within their sensing ranges and then collaboratively relay the measurements to the
AP. Without the knowledge of sensor and AP locations, Bhardwaj et al. (2001) and Hu
and Li (2004) derive upper bounds on network lifetime based on the assumption that all
sensor measurements are relayed via an optimal number of hops to the AP. While simple,
these upper bounds can be loose since network topology has not been taken into account.
Sparkled by the work of (Chang and Tassiulas 1999, 2000), network flow techniques have
been used to bound the lifetime of networks with fixed and known topology (Bhardwaj
and Chandrakasan 2002; Chang and Tassiulas 2004; Duarte-Melo et al. 2003; Giridhar
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and Kumar 2005; Kalpaki et al. 2002; Kansal et al. 2005). Meanwhile, a variety of other
methods have been proposed to evaluate or bound network lifetime. For example, the
reliability theory is applied to derive the lifetime distribution for both square-grid and
hex-grid networks (Jain and Liang 2005). Based on stochastic dominance, lifetime upper
bounds are derived in (Rai and Mahapatra 2005) for both linear and planar networks.
Assuming Poisson distribution of sensor locations, Zhang and Hou (2004) bound network
lifetime based on the theory of coverage processes. By calculating the lifetime of the set of
sensors that can communicate directly to the AP, Zhu and Papavassiliou (2003) propose an
iterative procedure to evaluate network lifetime. In (Blough and Santi 2002), the relation
between lifetime and node density is explored when the network employs a cell-based
geography-informed energy conservation scheme described in (Xu et al. 2001).

As compared to the flat ad hoc architecture, lifetime analysis of hierarchical and
SENMA networks is scarce. Under the hierarchical architecture, network lifetime is esti-
mated or bounded by optimally allocating energy to sensors (Duarte-Melo and Liu 2002)
or placing the AP (Pan et al. 2005). Under the SENMA architecture where sensors com-
municate directly with the AP, network lifetime is analyzed within the SSP framework
and obtained via the value iteration algorithm (Chen et al. 2006b, 2007). A lifetime upper
bound is derived in (Arnon 2005) for SENMA networks employing code division multiple
access (CDMA).

5.6 Conclusion

In this chapter, we have focused on the law of network lifetime and its application in MAC
design. We have demonstrated that the optimal MAC design under an energy constraint
should be based upon a physical layer model that captures diversities among sensors and be
adaptive to the age of the network. We have shown that protocols dynamically exploiting
dependencies between the MAC and the physical layers offer improved performance in
network lifetime.

While the law of lifetime presented in this chapter applies to a wide range of network
settings, it does not take into account of rechargeable sensors. When sensors can harvest
energy from the environment or be recharged by the mobile APs, the fundamental law
that governs network lifetime may change, so are the design principles. It is an interest-
ing direction to establish the fundamental properties of rechargeable sensor networks and
investigate the impact of the battery recharging rate on network lifetime.
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Detection in Sensor Networks

Venugopal V. Veeravalli and Jean-François Chamberland

Detection is potentially a prominent application for emerging sensor network technologies.
It often serves as the initial goal of a sensing system. Indeed, the presence of an object
has to be ascertained before a sensor network can estimate attributes such as position and
velocity. For systems observing infrequent events, detection may be the prevalent function
of the network. Furthermore, in some applications such as surveillance, the detection of
an intruder is the sole purpose of the sensor system. In the setting where local sensors
pre-process observations before transmitting data to a fusion center, the corresponding
decision-making problem is termed decentralized detection.

Decentralized detection with fusion was an active research field during the 1980s and
early 1990s, following the seminal work of Tenney and Sandell (1981). The application
driver for this research was distributed radar. That is, it was assumed that a set of radars
observing the same event were positioned at various locations and their decisions needed
to be fused at a command center. The high cost of data transfers at the time prompted
system designers to quantize and compress data locally before information was relayed to
the fusion center, hence the decentralized aspect of the problem. The goal was to design
the sensor nodes and the fusion center to detect the event as accurately as possible, subject
to an alphabet-size constraint on the messages transmitted by each sensor node. The reader
is referred to Tsitsiklis (1993), Viswanathan and Varshney (1997), Blum et al. (1997), and
to the references contained therein for a survey of the early work in this field.

More recently, decentralized detection has found applications in sensor networks. Wire-
less sensor nodes are typically subject to stringent resource constraints. To design an
efficient system for detection in sensor networks, it is imperative to understand the inter-
play between data compression, resource allocation, and overall performance in distributed
sensor systems. Classical results on inference problems, and on decentralized detection in
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particular, can be leveraged and extended to gain insight into the efficient design of sensor
networks. These results form a basis for much of the recent work on detection in sensor
networks.

6.1 Centralized Detection

We begin this survey with a review of detection theory, by considering the centralized
detection problem where all the sensor observations are available without distortion at the
fusion center. In the Bayesian problem formulation, the probability of error at the fusion
center is to be minimized; whereas in the Neyman-Pearson problem formulation, the prob-
ability of miss (type II error) is to be minimized, subject to a constraint on the probability
of false alarm (type I error) (Kay 1998; Poor 1998; Trees 2001). In most of this chapter, we
will consider Bayesian detection with the understanding that parallel developments are pos-
sible for the Neyman-Pearson formulation. The following example of centralized Bayesian
detection, which illustrates some of the basic concepts, will be useful later in the chapter
when we consider the decentralized setting.

Example 6.1.1 Consider a detection problem where the fusion center must distinguish
between two hypotheses, H0 and H1, based on L observations. Each observation consists
of one of two possible signals, s0 or s1, corrupted by additive noise

Y� = sj + N�, � = 1, . . . , L. (6.1)

The observation noise {N�} is assumed to be a sequence of independent and identically
distributed (i.i.d.) Gaussian components with zero-mean and variance σ 2. This implies that
the observed process {Y�}, conditioned on the true hypothesis, is a sequence of i.i.d. Gaussian
random variables. We can write the observations in vector form as

Y = Sj + N, (6.2)

where Y = (Y1, . . . , YL)T is the aggregate information available for decision-making,

Sj = (sj , . . . , sj )
T = sj 1T (6.3)

is the observed signal vector, and N = (N1, . . . , NL)T represents additive noise. Note that
the observation vector Y is jointly Gaussian under either hypothesis. Since the two possible
signal vectors are known, the covariance of Y is independent of the true hypothesis. The
optimal procedure for deciding between the two hypotheses is a threshold rule on the log-
likelihood ratio of the observation vector (Poor 1998). For known signals in Gaussian noise,
an optimal detector can equivalently be implemented as a threshold test on the statistics

T (Y ) = 1

L

L∑
�=1

Y� = 1T Y

L
. (6.4)

The function T (Y ) is itself a Gaussian random variable. Its probability distribution is there-
fore completely determined by its mean and variance. For S1 = −S0 = m1, we get

E[T (Y )] = ±m (6.5)
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where the leading sign is positive under hypothesis H1 and negative under H0. The variance
of T (Y ) is given by

Var(T (Y )) = σ 2

L
. (6.6)

If we further assume that the two hypotheses are equally likely, then the optimal decision
threshold at the fusion center is τ = 0. The performance of this threshold test on T

(
Y
)

is
characterized by the probability of error Pe = Q(m

√
L/σ), where Q(·) is the complemen-

tary Gaussian cumulative distribution function

Q(x) =
∫ ∞

x

1√
2π

e− ξ2

2 dξ. (6.7)

In the Neyman-Pearson problem formulation, the optimal detection threshold is implicitly
given by the equation Q((m + τ )

√
L/σ) = ε where ε is the constraint on the type I error

probability. The corresponding type II error probability is equal to Q((m − τ )
√

L/σ).

6.2 The Classical Decentralized Detection Framework

In the classical decentralized detection problem, a set of dispersed sensor nodes receives
information about the state of nature H . Based on its observation, sensor node � selects
one of D� possible messages and sends it to the fusion center via a dedicated channel.
Upon reception of the data, the fusion center produces an estimate of the state of nature by
selecting one of the possible hypotheses. Evidently, a distributed sensor system in which
every sensor node transmits a partial summary of its own observation to the fusion center
is suboptimal compared to a centralized system in which the fusion center has access
to the observations from all the sensors without distortion. Nonetheless, factors such as
cost, spectral bandwidth limitations, and complexity may justify the use of compression
algorithms at the nodes. Besides, in systems with a large number of sensors, unprocessed
information could flood and overwhelm the fusion center, and a centralized implementation
of the optimal detection rule may simply be unfeasible. A generic decentralized detection
setting is illustrated in Figure 6.1.

Resource constraints in the classical framework are captured by fixing the number
of sensor nodes and by further imposing a finite-alphabet constraint on the output of each
sensor. This implicitly limits the amount of data available at the fusion center. The quantity
of information provided to the fusion center by a network of L sensors, each sending one
of D� possible messages, does not exceed

L∑
�=1

�log2 (D�)� (6.8)

bits per channel use. Perfect reception of the sensor outputs is typically assumed at the
fusion center. For applications such as decentralized detection and estimation, judicious
signal processing at the nodes may enhance the overall performance of the sensor network.
Nevertheless, it is important to recognize that once the structure of the information supplied
by each sensor node is fixed, the fusion center faces a standard problem of statistical
inference (Chair and Varshney 1988; Tsitsiklis 1993). As such, a likelihood-ratio test on



122 DETECTION IN SENSOR NETWORK

Environment

Observations

Sensor 1 Sensor L

Discrete Messages

Fusion Center

Sensor

Figure 6.1 Abstract representation of the classical decentralized detection framework.

the received data will minimize the probability of error at the fusion center for a binary
hypothesis testing problem, and a minimum mean-square estimator will minimize the mean-
square error for an estimation problem. The crux of a standard decentralized inference
problem is to determine what type of information each sensor should send to the fusion
center.

Example 6.2.1 Consider a distributed sensor network similar to the problem introduced
in Example 6.1.1. This time, suppose that the observations {Y�} are only available at some
remote sensor locations, and assume that each sensor must quantize its own observation to
a single bit (D� = 2 admissible messages). One possible quantization rule for the sensors
is given by γ (y) = 11[0,∞)(y) where 11(·) represents the indicator function. Accordingly, the
information reaching the fusion center is of the form U� = γ (Y�). When the two hypotheses
H0 and H1 are equally likely, an optimal decision procedure at the fusion center for this
special case is a majority rule on the received variables (Chair and Varshney 1988); H0 is
selected if

L∑
�=1

U� <
L

2
(6.9)

and H1 is picked otherwise. The probability of error at the fusion center is then given by

Pe = 1

2

�L/2�∑
k=0

pL−k(1 − p)k + 1

2

�L/2�∑
k=0

pL−k(1 − p)k (6.10)

where p = Q (m/σ).
We note that the probability of error at the fusion center for the decentralized system is

larger than the probability of error for the centralized system introduced in Example 6.1.1.
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Furthermore, we emphasize that while the optimality of the decision rule at the fusion center
is evident, it is more difficult to qualify the suitability of the local quantization rule at the
sensors.

A celebrated accomplishment in decentralized detection for binary hypothesis testing is the
demonstration that, for the classical framework, likelihood-ratio tests at the sensor nodes
are optimal when the observations are conditionally independent, given each hypothesis
(Tsitsiklis 1993). This property drastically reduces the search space for an optimal collection
of local quantizers, and although the resulting problem is not necessarily easy, it is amenable
to analysis in many contexts. The significance of this result is exemplified by the fact that
the majority of the research on decentralized detection assumes that the observations are
conditionally independent and identically distributed. In general, it is reasonable to assume
conditional independence across sensor nodes if inaccuracies at the sensors are responsible
for the noisy observations. However, if the observed process is stochastic in nature or if
the sensors are subject to external noise, this assumption may fail. Without the conditional
independence assumption, the problem of finding the optimal solution to the decentralized
detection problem is computationally intractable (Tsitsiklis and Athans 1985).

Even under a conditional independence assumption, finding optimal quantization levels
at the sensor nodes remains, in most cases, a difficult problem (Tsitsiklis and Athans 1985).
This optimization problem is known to be tractable only under restrictive assumptions
regarding the observation space and the topology of the underlying network. The solution
does not scale well with the number of sensors except in some special cases, and it is not
robust with respect to priors on the observation statistics.

A popular heuristic method to design decentralized detection systems is to apply a
person-by-person optimization (PBPO) technique (Varshney 1996; Viswanathan and Varsh-
ney 1997). In this technique the decision rules are optimized one sensor at a time, while
keeping the transmission maps of the remaining sensors fixed. The index of the sensor node
being optimized is changed with every step. The overall performance at the fusion center
is guaranteed to improve (or, at least, to not worsen) with every iteration of the PBPO
algorithm. Specifically, in a Bayesian setting, the probability of error at the fusion center
will be a monotone decreasing function of the number of PBPO iterations. Unfortunately,
this algorithm does not necessarily lead to a globally optimal solution, and may only lead
to a local minimum of the solution space. Other notable heuristics applicable to the design
a decentralized detection system include the saddle-point approximation method (Aldosari
and Moura 2007), and techniques based on empirical risk minimization and marginalized
kernels (Nguyen et al. 2005). In contrast to the majority of the work on decentralized detec-
tion, the kernel method addresses system design for situations where only a collection of
empirical samples is available; the joint distributions of the sensor observations conditioned
on the possible hypotheses need not be known.

For wireless sensor networks with a small number of nodes, intuition regarding an
optimal solution may be misleading. Consider a scenario where observations at the sensor
nodes are conditionally independent and identically distributed. The symmetry in the prob-
lem suggests that the decision rules at the sensors should be identical, and indeed identical
local decision rules are frequently assumed in many situations. However, counterexamples
for which nonidentical decision rules are optimal have been identified (Blum and Kassam
1992; Cherikh and Kantor 1992; Tsitsiklis 1993; Zhu et al. 2000). Interestingly, identical



124 DETECTION IN SENSOR NETWORK

decision rule are optimal for binary hypothesis testing in the asymptotic regime where the
number of active sensors increases to infinity (Tsitsiklis 1988).

6.2.1 Asymptotic Regime

In view of the anticipated size of future sensor networks, we present an asymptotic regime
where the number of sensors L and, possibly, the area covered by these sensors tend to
infinity. For any reasonable collection of transmission strategies, the probability of error at
the fusion center goes to zero exponentially fast as L grows unbounded. It is then adequate
to compare collections of strategies based on their exponential rate of convergence to zero,

lim
L→∞

log Pe (GL)

L
. (6.11)

The limiting value of (6.11) is sometimes referred to as the error exponent. Throughout,
we use GL as a convenient notation for a system configuration that contains L sensors. The
following theorem describes how the class of transmission strategies with identical sensor
nodes is optimal in terms of error exponent. Let � denote the collection of all the local
decision rules that can be implemented at the sensors. Also, let G be the set of all finite
subsets of �. For G ∈ G, we use GN to represent the set of system configurations of the
form G = (γ1, . . . , γL), where L is an integer and every local decision rule γ� is an element
of G. In other words, GN is the set of all strategies with a finite number of sensor nodes
where every node uses a local transmission map γ� contained in G. Likewise, let {γ }N

denote the set of strategies for which all the sensor nodes employ the same local decision
rule γ .

Theorem 6.2.2 Suppose that the observations are conditionally independent and identically
distributed. Then using identical local decision rules for all the sensor nodes is asymptoti-
cally optimal;

inf
G∈G

lim
L→∞

min
GL∈GN

log Pe (GL)

L
= inf

γ∈�
lim

L→∞
min

GL∈{γ }N
log Pe (GL)

L
. (6.12)

This theorem was originally proved by Tsitsiklis (1988) through an application of the
Shannon-Gallager-Berlekamp lower bound (Gallager 1968). An alternative derivation can
be obtained using the encompassing framework of large deviations (Chamberland and Veer-
avalli 2004a; Chen and Papamarcou 1993). Asymptotic regimes applied to decentralized
detection are convenient because they capture the dominating behavior of large systems.
This leads to valuable insights into the problem structure and its solution. Design guidelines
based on large deviations are expected to be applicable to all sufficiently large systems,
including large wireless sensor networks. In practice, these guidelines are often found to
provide good solutions, even for somewhat small systems.

6.3 Decentralized Detection in Wireless Sensor Networks

The classical decentralized detection framework has limited application to modern wireless
sensor networks, as it does not adequately take into account important features of sensor
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Figure 6.2 Abstract representation of an alternative decentralized detection framework.

technology and of the wireless links between the sensors and the fusion center. In particular,
finite-alphabet restrictions on the sensor outputs do not capture the resource constraints
of cost, spectral bandwidth and energy adequately for efficient design. Furthermore, the
assumption that sensor messages are received reliably at the fusion center ignores the link
variability intrinsic to wireless communications. In addition, the emphasis of the research
on the classical problem has been on optimal solutions rather than scalable ones.

Reevaluating the original assumptions of the classical decentralized detection frame-
work is an instrumental step in deriving valuable guidelines for the efficient design of
sensor networks. Many recent developments in the field have been obtained by studying
the classical problem while incorporating more realistic system assumptions in the prob-
lem definition. The motivation underlying many of these new research initiatives is the
envisioned success of future wireless sensor networks. As such, an alternative theoretical
framework tailored to decentralized detection over sensor networks is starting to emerge,
as depicted in Figure 6.2. In the next section, we present interesting developments in
the evolution of the decentralized detection problem formulation. We also identify impor-
tant properties that seem to transcend most variations of the basic problem definition. To
better understand good design strategies for distributed sensing, we present the principal
constituents of a typical wireless sensor network along with their functions.

6.3.1 Sensor Nodes

Sensor nodes vary in cost and functionality. Yet their architectures and modes of operation
are similar enough to draw useful conclusions about the constitution of a generic wireless
sensor (Raghunathan et al. 2002). A generic node comprises four subsystems: a sensing unit,
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Figure 6.3 A generic wireless sensor node is composed of four subsystems: a sensing
unit, a microprocessor, a communication unit, and a power supply.

a microprocessor, a communication unit, and a power supply (see Figure 6.3). The sensing
unit links the sensor node to the physical world, whereas the microprocessor is responsible
for controlling the sensor and processing its measurements. The microprocessor can be
active or sleeping. In general, a more powerful microprocessor dissipates more power.
Thus, the choice of a microprocessor should be dictated by the performance requirements
of the intended application scenario, choosing the smallest microprocessor that fulfills
these requirements. The communication unit, which enables the sensor node to exchange
information with the fusion center and other nodes, has four distinct modes of operation:
transmit, receive, idle, and sleeping. The detailed operation of the communication unit is
somewhat involved. Its power consumption in transmit mode, for example, may depend on
the data rate, the modulation scheme employed, and the transmission distance. Fortunately,
the power consumption characteristics of the communication unit can be reduced to a few
important considerations, which are discussed in more detail in Section 6.5.4.

6.3.2 Network Architectures

Network architectures for distributed sensor systems come in many different flavors. Care-
fully deployed systems usually form a tree, i.e., a network where nodes form a connected
graph with no cycles (Tsitsiklis 1993). In a tree configuration, the information propagates
from the sensor nodes to the fusion center in a straightforward manner, following a unique
deterministic path. Communication overheads are therefore kept to a minimum. The parallel
architecture, a subclass of the tree category where each node communicates directly with
the fusion center, has received much attention in the decentralized detection literature. It
is the preferred configuration to study the impact of quantization in decentralized detection
as it provides a simple paradigm, easily amenable to analysis and simulations.

A distributed sensor system can also assume the form of a self-configuring wireless
sensor network. In such systems, nodes are positioned randomly in an environment and
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then cooperate with one another to produce a dynamic communication infrastructure for
the resulting network. The price paid for the greater flexibility of self-configuring net-
works is a much more involved communication mechanism, with substantial overheads.
Communication aspects of self-configuring networks include topology management, node
identification, and the choice of routing policies. In self-configuring wireless networks,
nodes successively assume the roles of sensors, relays, and routers. The choice of a strat-
egy for multi-hop routing between a source and its destination depends on the ultimate goal
of the design. A reasonable abstraction for decentralized detection over sensor networks is
one where the sensors local to an event of interest are used for sensing, and they transmit
their information using a single hop or multiple hops to a fusion center. The other sensors in
the system may be used as relays or routers. The fusion center is then responsible for final
decision-making and further relaying of the information across the network if necessary.

6.3.3 Data Processing

Distributed sensing induces a natural tradeoff between performance, communication, and
complexity. Combining information from neighboring nodes via in-network signal process-
ing can improve reliability and reduce the amount of traffic on the network. On the other
hand, the exchange of additional information could potentially yield better decisions. A
simple technique to exchange information in the context of decentralized detection is pro-
posed by Swaszek and Willett (1995). The authors explore the use of feedback, successive
retesting, and rebroadcasting of the updated decisions as a means of reaching a consensus
among sensors (also see Section 6.5.2). Two modes of operation are discussed: a fast mode
where a decision is reached rapidly, and an optimum decision scheme that may require
several rounds of information sharing before a consensus is reached. Both schemes lead to
a unanimous decision at the nodes: the sensors never agree to disagree. These two schemes
illustrate well the natural tradeoff between resource consumption and system performance,
as the more intricate scheme performs better.

Under a different setting, in-network signal processing is studied by D’Costa et al.
(2004). In their work, observations are assumed to possess a local correlating structure
that extends only to a limited area. As such, the sensor network can be partitioned into
disjoint spatial coherence regions over which the signals remain strongly correlated. The
observations from different regions are assumed to be approximately conditionally inde-
pendent. The resulting partitioning imposes a structure on the optimal decision rule that is
naturally suited to the communication constraints of the network. Information is exchanged
locally to improve the reliability of the measurements, while compressed data is exchanged
among coherence regions. Under mild conditions, the probability of error of the proposed
classification scheme is found to decay exponentially to zero as the number of independent
node measurements increases to infinity.

6.4 Wireless Sensor Networks

A significant departure from the classical decentralized detection framework comes from
the realization that wireless sensors transmit information over a shared medium, the com-
mon wireless spectrum. In a wireless environment, proximate nodes will be transmit-
ting information over a multiple-access channel or, more generally, through a wireless
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network infrastructure. A problem formulation that better accounts for the physical resource
constraints imposed on the system is needed for accurate performance evaluation. As dis-
cussed above, sensor nodes are often subject to very stringent power requirements. A limited
spectral bandwidth and a bound on the total cost of the system may further exacerbate the
design process. A flexible and adequate solution to distributed sensing should account for
these important factors.

It is possible to extend the results of Theorem 6.2.2 to the case where system resources
rather than the number of sensors constitute the fundamental design limitation. Let A be
a global resource budget for a wireless sensor network. For instance, A may represent a
sum-rate constraint, a total power requirement, a bound on system cost, or a combination
thereof. We denote an admissible strategy for the total constraint A by GA. As before,
using identical sensor nodes becomes optimal as the system grows larger (Chamberland
and Veeravalli 2004a).

Theorem 6.4.1 Suppose that the observations are conditionally independent and identi-
cally distributed. Then using identical transmission mappings for all the sensor nodes is
asymptotically optimal,

inf
G∈G

lim
A→∞

min
GA∈GN

log Pe (GA)

A
= inf

γ∈�
lim

A→∞
min

GA∈{γ }N
log Pe (GA)

A
. (6.13)

A necessary condition for this result to hold is that the number of sensor nodes must tend to
infinity as the actual resource budget grows without bound. This is usually the case, as the
amount of information provided by a single observation is bounded and, consequently, the
amount of physical resources devoted to the corresponding sensor should also be finite. This
theorem provides an extension to Theorem 6.2.2 and to the work by Tsitsiklis (1988). In
the current formulation, the resource budget rather than the number of sensor nodes forms
the fundamental constraint on the sensor system. Moreover, γ need not be a finite-valued
function in this setting, and the communication channels between the sensor nodes and
the fusion center need not be noiseless. The optimality of wireless sensor networks with
identical sensor nodes is encouraging. Such networks are easily implementable, amenable
to analysis, and provide robustness to the system through redundancy.

Asymptotic analyses based on error exponents also have the added benefit of decou-
pling the optimization across the sensors because the sensor mappings can be designed
according to a local metric. For example, consider a Bayesian problem formulation where
the probability of error at the fusion center is to be minimized. For wireless sensor networks
with a large resource budget and conditionally i.i.d. observations, prospective sensor types
should be compared according to their normalized Chernoff information

− 1

a(γ )
min

λ∈[0,1]

{
log EQ0,γ

(
dQ1,γ

dQ0,γ

)λ
}

, (6.14)

where a(γ ) is the expected amount of system resources consumed by a node of type γ ,
and Qj,γ is the induced probability measure on the received information U� = γ (Y�) at
the fusion center under hypothesis Hj . The normalized Chernoff information captures the
tradeoff between resource consumption and information rendering in large sensor networks.
Intuitively, allocating a larger amount of resources per node implies receiving detailed
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information from each node at the fusion center. On the other hand, for a fixed budget A,
a reduction in resource consumption per node allows the system to contain more active
sensors. The normalized Chernoff information describes in mathematical terms how this
tradeoff takes place: Chernoff information divided by consumed resources. For example,
doubling the Chernoff information provided by each sensor node results in the same gain in
overall performance as reducing the resource consumption per node by half and doubling
the number of nodes.

We can extend the preceding results to the Neyman-Pearson variant of the detection
problem with little effort. In the latter problem formulation, the prior probabilities on H0

and H1 are unknown. The function a(γ�) then denotes the amount of resources consumed
by sensor node � under hypothesis H0, and the global resource budget A is a constraint on
the behavior of the system under hypothesis H0. Again, one can show that using identical
transmission mappings is asymptotically optimal as A tends to infinity. For ε ∈ (0, 1), let
βε(G) represent the infimum type II error probability among all the decision tests such that
the type I error probability α(G) is less than ε.

Theorem 6.4.2 Using identical transmission mappings for all the sensor nodes is asymp-
totically optimal

inf
G∈G

lim inf
A→∞

min
GA∈GN

log βε(GA)

A
= inf

γ∈�
lim inf
A→∞

min
GA∈{γ }N

log βε(GA)

A
. (6.15)

In this case, the normalized relative entropy

1

a(γ )
D
(Q0,γ ‖Q1,γ

)
(6.16)

plays the role of the normalized Chernoff information. Indeed, in the Neyman-Pearson
framework, prospective sensor types for a sensor network with a large resource constraint
should be compared according to the normalized relative entropy.

When the observations are not conditionally i.i.d., the normalized Chernoff information
(or relative entropy) can no longer be shown to be the right metric for optimizing the sensor
mappings. However, even in this case, the asymptotic results described in Theorems 6.4.1
and 6.4.2 can be used as some justification in order to decouple the optimization across
sensors and choose each sensor mapping to maximize the normalized Chernoff information
(for the Bayesian problem) or relative entropy (for the Neyman-Pearson problem). In this
context, it is important to distinguish between the asymptotic results in the Bayesian and
Neyman-Pearson formulations, in that in the latter formulation, the normalized relative
entropy can be shown to be the right metric for optimizing the sensor mappings as long as
the observations are conditionally independent and there are a large number of sensors of
each type. The minimization over λ in (6.14) does not allow for a similar generalization in
the Bayesian setting.

6.4.1 Detection under Capacity Constraint

The information theoretic capacity of a multiple-access channel is governed by its band-
width, the signal power, and the noise power spectral density. More generally, the admis-
sible rate-region of a practical system with a simple encoding scheme may depend on
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the bandwidth, the signal power, the noise density, and the maximum tolerable bit-error
rate at the output of the decoder. Specifying these quantities is equivalent to fixing the
sum-rate of the corresponding multiple-access channel. A natural initial approach to the
capacity-constrained problem is to overlook the specifics of these physical parameters and to
constrain the sum-capacity of the multiple-access channel available to the sensors. Specif-
ically, a multiple-access channel may only be able to carry R bits of information per
channel use. Thus, the new design problem becomes selecting L and D� to optimize
system performance at the fusion center, subject to the capacity constraint

L∑
�=1

⌈
log2 (D�)

⌉ ≤ R. (6.17)

For the time being, we ignore communication errors in the transmitted bits. Upon reception
of the data, the fusion center makes a tentative decision about the state of nature H .

In the framework of Theorem 6.4.1, we have A = R and a(γ ) = ⌈
log2(Dγ )

⌉
. We know

that using identical transmission functions for all the sensor nodes is asymptotically optimal.
Moreover, a discrete transmission mapping γ ∗ is an optimal function if it maximizes the
normalized Chernoff information,

γ ∗ = arg max
γ

− 1⌈
log2

(
Dγ

)⌉ min
λ∈[0,1]

{
log EQ0,γ

(
dQ1,γ

dQ0,γ

)λ
}

. (6.18)

As an immediate corollary to this result, it can be shown that binary sensors are optimal
if there exists a binary quantization function γb whose Chernoff information exceeds half
of the information contained in an unquantized observation (Chamberland and Veeravalli
2003b, 2004a).

Corollary 6.4.3 Let Pj be the probability measure of the observation Y� under hypothesis
Hj , and assume that P0 and P1 are mutually absolutely continuous. If there exists a binary
transmission mapping γb such that

− min
λ∈[0,1]

{
log EQ0,γb

(
dQ1,γb

dQ0,γb

)λ
}

≥ −1

2
min

λ∈[0,1]

{
log EP0

(
dP1

dP0

)λ
}

, (6.19)

then having identical sensor nodes, each sending one bit of information, is asymptotically
optimal.

Corollary 6.4.3 is not too surprising in itself. It asserts that if the contribution of the first
bit of quantized data to the Chernoff information exceeds half of the Chernoff information
offered by an unquantized observation, then using binary sensors is optimal. However,
the significance of this result is that the requirements of the corollary are fulfilled for
important classes of observation models (Chamberland and Veeravalli 2003b). In particu-
lar, binary sensor nodes are optimal for the problem of detecting deterministic signals in
Gaussian noise, and for the problem of detecting fluctuating signals in Gaussian noise using
a square-law detector. In these situations, having L = R identical binary sensor nodes is
asymptotically optimal. That is, the gain offered by having more sensor nodes outperforms
the benefits of getting detailed information from each sensor.
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This attribute can be generalized to a very important property that seems to be valid
for a wide array of detection problems. In most detection settings, including the ones
specified above, the number of bits necessary to capture most of the information contained
in one observation appears to be very small. In other words, for detection purposes, the
information contained in an observation is found in the first few bits of compressed data
(Aldosari and Moura 2004; Lexa et al. 2004; Willett and Swaszek 1995). Several additional
studies point to the fact that most of the information provided by an observation can be
compressed to a few bits (Chen et al. 2004; Luo and Tsitsiklis 1994; Xiao and Luo 2005).
The performance loss due to quantization decays very rapidly as the number of quantization
levels increases. As such, message compression only plays a limited role in overall system
performance. This property greatly simplifies quantizer design and system deployment. A
second property worth mentioning at this point is that, for conditionally independent and
identically distributed observations, the diversity obtained by using multiple sensors more
than offsets the performance degradation associated with receiving only coarse data from
each sensor (Chamberland and Veeravalli 2003b, 2004a).

6.4.2 Wireless Channel Considerations

Most of the early results on decentralized detection assume that each sensor node pro-
duces a finite-valued function of its observation, which is conveyed reliably to the fusion
center. In a wireless system, this latter assumption of reliable transmission may fail as
information is transmitted over noisy channels (Chen and Willett 2005; Duman and Salehi
1998). This limitation is made worse by the fact that most detection problems are subject
to stringent delay constraints, thereby preventing the use of powerful error-correcting codes
at the physical layer. Many recent research initiatives on decentralized detection consist
in incorporating the effects of the wireless environment on the transmission of messages
between the sensors and the fusion center. Unfortunately, to quantify the role of the wire-
less medium in sensor networks, very specific system assumptions must be made and the
elegance and generality of the classical framework are somewhat lost. It is nonetheless
possible to identify universal guidelines from such an analysis.

Example 6.4.4 Again, consider a distributed sensor network akin to the one introduced
in Example 6.1.1. However, suppose that the observations {Y�} are only available at the
sensor nodes. Furthermore, assume that data must be transmitted over parallel wireless
communication channels. The fusion center receives degraded information U� from sensor �

that is given by
U� = γ� (Y�) + W�, (6.20)

where W� is additive Gaussian noise with distribution N (0, σ 2
w). We study the simple situa-

tion where the additive noise is independent and identically distributed across sensor nodes.
The hypothesis testing problem consists of deciding based on the received sequence {U�}
whether the law generating {Y�} is P0 corresponding to hypothesis H0, or P1 corresponding
to hypothesis H1. We focus on the specific detection problem where the wireless sensor net-
work is subject to a total power constraint. That is, the expected consumed power summed
across all the sensor nodes may not exceed a given constraint A,

L∑
�=1

a(γ�) ≤ A (6.21)
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where a(γ�) > 0 represents the expected power consumed by sensor node �. This problem
falls in the general framework of Theorem 6.4.1. Identical sensors are therefore optimal
and system performance is maximized by using the normalized Chernoff information as the
design criterion for the individual sensors.

For the purpose of illustration, we study the class of nodes where each unit retransmits
an amplified version of its own observation. In this setup, a sensor node acts as an analog
relay amplifier with a transmission mapping of the form γ (s)(y) = sy. The transmission map
γ (s) induces the following probability laws at the fusion center,

Q0,γ (s) ∼ N (−sm, s2σ 2 + σ 2
w

)
(6.22)

Q1,γ (s) ∼ N (
sm, s2σ 2 + σ 2

w

)
. (6.23)

The associated radiated power per node is given by

a
(
γ (s)

) = E
[
s2y2] = s2m2 + s2σ 2, (6.24)

where the expectation is taken over the random variables Y and H . We can express the
corresponding normalized Chernoff information as

− 1

a
(
γ (s)

) log

(∫ ∞

−∞

√
Q0,γ (s) (u)Q1,γ (s) (u)du

)
= m2

2
(
m2 + σ 2

) (
s2σ 2 + σ 2

w

) . (6.25)

The normalized Chernoff information is a monotone decreasing function of the radiated
power. Moreover, for any transmission mapping of the form γ (s)(y) = sy, the asymptotic
decay rate in the error probability is bounded above by

− lim
A→∞

log Pe (GA)

A
≤ m2

2σ 2
w

(
m2 + σ 2

) . (6.26)
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Figure 6.4 Normalized Chernoff information for analog relay amplifiers.
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Table 6.1 System parameters for wireless sensor network.

Parameter Description
Value

m2/σ 2 ∈ {1/16, 1, 16} Signal-to-noise ratio at sensor
a(γ ) ∈ [10−2, 102] Power radiated by sensor node
σ 2

w = 1 Variance of communication noise

Figure 6.4 plots the normalized Chernoff information along with the corresponding upper
bound for the transmission mapping γ (s)(y) = sy and the system parameters of Table 6.1.

Interestingly, although the problem definition of Example 6.4.4 constitutes a significant
departure from the classical decentralized detection framework, a similar phenomenon is
observed. Overall performance is optimized when the system uses as many independent
sensors as possible, giving each sensor a minimum amount of system resources. A similar
conclusion can be reached for a class of sensor nodes where each node compresses its own
observation to a one-bit summary message.

Example 6.4.5 We revisit the problem introduced in Example 6.4.4. This time, however, we
adopt a different class of sensor nodes. We study the collection of nodes where each unit
computes and sends a one-bit summary of its own observation to the fusion center. Binary
sensors of this type are very common in the decentralized detection literature. We assume
that the decision rule γ (b) employed by the nodes is a binary threshold function of the form

γ (b)(y) =
{

b : y ≥ 0
−b : y < 0

, (6.27)

where b > 0. This binary decision rule produces the following probability measures at the
fusion center,

Q0,γ (b) (u) = 1√
2πσ 2

w

Q
(

m
σ

)
exp

(
− (u−b)2

2σ 2
w

)
+ 1√

2πσ 2
w

Q
(−m

σ

)
exp

(
− (u+b)2

2σ 2
w

) (6.28)

Q1,γ (b) (u) = Q0,γ (b) (−u). (6.29)

We note that the radiated power per sensor node is again independent of the prior prob-
abilities on H0 and H1. It is given by a

(
γ (b)

) = b2. The normalized Chernoff information
can be computed as

− 1

b2
log

(∫ ∞

−∞

√
Q0,γ (b) (u)Q1,γ (b) (u)du

)
. (6.30)

Although (6.30) does not admit a closed form expression, it can easily be computed numer-
ically. It is also possible to derive an upper bound for the Chernoff information of (6.30).
First, we note from Figure 6.5 that the normalized Chernoff information is monotone decre-
asing in b. It follows that the normalized Chernoff information corresponding to transmission
mapping γ (b) is bounded by its limiting value as b approaches zero,

lim
b↓0

− 1

b2
log

(∫ ∞

−∞

√
Q0,γ (b) (u)Q1,γ (b) (u)du

)
= 1

2σ 2
w

(
Q
(
−m

σ

)
− Q

(m

σ

))2
. (6.31)
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Figure 6.5 Normalized Chernoff information corresponding to wireless sensor nodes with
binary local decision rule.

Figure 6.5 shows the normalized Chernoff information along with the corresponding upper
bound for the transmission mapping of (6.27) and the system parameters of Table 6.1.

Once again, the tradeoff between the number of sensors and the amount of resources
allocated to each sensor seems to favor large networks composed of many nodes. It is
instructive to compare the transmission mappings introduced in the previous two examples.
The analog sensor nodes perform better at low observation signal-to-noise ratio, whereas
binary sensors are advantageous above a certain threshold signal-to-noise ratio (Chamber-
land and Veeravalli 2004a). This precludes an early dismissal of analog sensor nodes in
favor of the more studied digital nodes. Indeed, for some detection applications, wire-
less sensor nodes with continuous transmission mappings may outperform sensor nodes
with finite-valued transmission mappings. The use of a restricted class of sensors in
Example 6.4.4 and Example 6.4.5 underscores the difficulty of finding an optimal trans-
mission mapping for the sensors. Identifying the best possible transmission map involves
a non-convex optimization problem over a space of measurable functions. Such problems
are, in general, very difficult to solve. Restricting our attention to analog relay amplifiers or
binary decision rules drastically reduces the solution space. An optimal design is therefore
easily obtained. The more difficult problem of finding a transmission map that maximizes
the normalized Chernoff information without additional constraints remains unsolved.

6.4.3 Correlated Observations

When sensor nodes are densely packed in a finite area, their observations are likely to
become increasingly correlated. While the popular assumption that observations at the sen-
sors are conditionally independent is convenient for analysis, it does not necessarily hold for
arbitrary sensor systems. For instance, whenever sensor nodes lie in close proximity to one
another, we expect their observations to become strongly correlated. Different approaches
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have been employed to study the latter problem. Willett et al. (2000) present a thorough
analysis for the binary quantization of a pair of dependent Gaussian random variables.
Their findings indicate that even in this simple setting, an optimal detector may exhibit
very complicated behavior. Kam et al. (1992) examine the structure of an optimal fusion
rule for the more encompassing scenario where multiple binary sensors observe condition-
ally dependent random variables. Blum and Kassam (1992) investigate the structure of an
optimal detector when faced with weak signals and dependent observations. They also con-
sider decentralized detection for dependent observations under a constant false-alarm rate
criterion (Blum and Kassam 1995). Chen and Ansari (1998) propose an adaptive fusion
algorithm for an environment where the observations and local decisions are dependent
from one sensor to another. This adaptive approach requires the knowledge of only a few
system parameters. Additional studies explore the effects of correlation on the performance
of distributed detection systems (Aalo and Viswanathan 1989; Drakopoulos and Lee 1991).
Blum (1996) provides a discussion of locally optimum detectors for correlated observations
based on ranks. The numerical results contained in this work suggest that distributed detec-
tion schemes based on ranks and signs are less sensitive to the exact noise statistics when
compared to optimum schemes based directly on the observations. This list is not intended
to be exhaustive, but it offers an overview of previous work on decentralized detection
with conditionally dependent observations.

Although conditional independence is a widely used assumption in the literature, it is
likely to fail for dense networks. The theory of large deviations can be employed to assess
the performance of wireless sensor systems exposed to correlated observations (Chamber-
land and Veeravalli 2006; Shalaby and Papamarcou 1994). In particular, the Gärtner-Ellis
theorem and similar results from large-deviation theory have been successfully employed
to assess the asymptotic performance of large, one-dimensional systems (Benitz and Buck-
lew 1990; Bercu et al. 1997; Bryc and Dembo 1997). For differentiating between known
signals in Gaussian noise, overall performance improves with sensor density; whereas for
the detection of a Gaussian signal embedded in Gaussian noise, a finite sensor density is
optimal (Chamberland and Veeravalli 2006).

Example 6.4.6 Consider the detection problem where observations become increasingly
correlated as sensor nodes are placed in close proximity. Mathematically, we adopt the
exact same system as in Example 6.4.4, except that the observation noise sequence {N�}
is equivalent to the sampling of a 1-dimensional Gauss-Markov stochastic process. The
covariance function of the observation noise is given by

E[NkN�] = σ 2ρd(k,�) (6.32)

where d(k, �) is the distance between sensors k and �. When the sensors are equally spaced
at a distance d, the best possible error exponent becomes (Chamberland and Veeravalli
2006)

− lim
A→∞

log Pe (GA)

A
≤ m2

2
(
m2 + σ 2

) (
1 − ρd

)
σ 2

w

(
1 − ρd

)+ s2σ 2
(
1 + ρd

) . (6.33)

Correlation degrades overall performance. Still, it is interesting to note that performance
improves with node density. In particular, although correlation and observation signal-to-
noise ratio affect overall performance, they do not necessarily change the way the sensor
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network should be designed. Specifically, systems with many low-power nodes will perform
well for the detection of deterministic signals in Gaussian noise (Chamberland and Veer-
avalli 2004b, 2006). There are situations where performance does not necessarily improves
with node density. In the scenario where sensor nodes attempt to detect the presence of a
stochastic signal in Gaussian noise, performance increases with sensor density only up to
a certain point. Beyond this threshold, the performance starts to decay.

6.4.4 Attenuation and Fading

The performance of a sensor network depends on the nature of the wireless environment
available to the sensor nodes. Wireless channels are generally prone to attenuation and
fading. If sensor nodes are to be scattered around somewhat randomly, it is conceivable
that their respective communication channels will feature different mean path gains, with
certain nodes possibly having much better connections than others. Furthermore, changes
in the environment, interference, and motion of the sensors can produce time-variations
in the instantaneous quality of the wireless channels. It is then of interest to quantify the
impact of fading on the performance of distributed sensor systems. At least two distinct
cases are conceivable corresponding, respectively, to the situations where the channel state
information is or is not available at the sensor nodes.

Having channel state information at the sensors permits the use of adaptive transmission
mappings where a sensor decides what type of information to send based on the current
quality of the channel. If the wireless channel is unreliable, then most of the available
resources should be devoted to transmitting critical information. On the other hand, when
the channel is in a good state, the sensor node can potentially use a more encompassing
transmission map. Chen et al. (2004) modify the classical decentralized detection problem
by incorporating a fading channel between each sensor and the fusion center. They derive a
likelihood-ratio-based fusion rule for fixed local decision devices. This optimum fusion rule
requires perfect knowledge of the local decision performance indices and the state of the
communication channels over which messages are sent. Alternative fusion schemes that do
not require as much side information are also proposed. A decision rule based on maximum-
ratio combining and a two-stage approach inspired by the Chair-Varshney decision rule are
analyzed. These concepts are further researched by Niu et al. (2006) for the scenario where
instantaneous channel state information is not available at the fusion center. Acquiring
channel state information may be too costly for a resource-constrained sensor network. It
may also be impossible to accurately estimate the quality of a fast-changing channel. In
their work, Niu et al. propose a fusion rule that only requires knowledge of the channel
statistics. At low signal-to-noise ratio, the proposed fusion rule reduces to a statistic in the
form of an equal-gain combiner; whereas at high signal-to-noise ratios, the proposed rule
is equivalent to the Chair-Varshney decision procedure.

In decentralized problems, the most significant bit of a quantized observation seems
to carry most of the information for the purpose of decision making. As such, it should
be given more protection against noise and errors. This observation is supported by the
fact that sending a one-bit message outperforms schemes where two bits of information
are transmitted when the communication signal-to-noise ratio is low (Chamberland and
Veeravalli 2004c). Conversely, at high signal-to-noise ratios, multiple bits of quantized
data can be transferred to the fusion center.
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Example 6.4.7 Consider the simple scenario where sensor node � has access to observation

Y� = sj + N�. (6.34)

The observation noise {N�} is again a sequence of i.i.d. Gaussian components with zero-
mean and variance σ 2. The signal sj is equal to −m under hypothesis H0, and to m under
hypothesis H1. The sensor nodes transmit their information over wireless channels and the
fusion center receives a noisy version of the data sent by the nodes,

U� = ��γ�(Y�, ��) + W�, (6.35)

where W� is additive Gaussian noise with N (
0, σ 2

w

)
. The wireless connection �� is subject

to Rayleigh fading:
f�(θ) = 2θe−θ2

, θ ≥ 0. (6.36)

Based on the received data, the fusion center must choose one of the two possible hypotheses.
Since wireless sensor nodes are typically powered by small batteries, the performance

and viability of sensor networks rely strongly on energy conservation. As such, a sensor
node may be forced to transmit at very low power, thereby operating at levels where com-
munication errors are non-negligible. At such levels, the choice of a signaling scheme may
have a significant impact on the performance of the system. For illustrative purposes, we
assume that the total energy budget per transmission is fixed and equal to a constant E.
We consider the specific case where the observation at each sensor node is quantized to
two bits. These bits are sent directly to the fusion center over a Rayleigh fading channel.
Depending on the specific realization of its channel gain, sensor node � decides how much
energy should be allocated to the most significant bit and how much energy should be given
to the second bit.
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Figure 6.6 Chernoff information as a function of energy allocation for various channel
gains. On the figure, the different functions correspond to increasingly favorable channel
gains.
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Figure 6.7 Chernoff information for binary signaling, quaternary signaling, and for the
adaptive scheme where energy allocation is based on the state of the channel.

Figure 6.6 shows the Chernoff information as a function of energy allocation for dif-
ferent channel gains. The most significant bit has energy E(1 − ρ), whereas the second
bit has energy Eρ. As seen in Figure 6.6, the optimal energy allocation varies with chan-
nel gain. At low signal-to-noise ratio, most of the energy is given to the most significant
bit; while at higher signal-to-noise ratio, energy is split between the two bits. The optimal
operating points are marked with an ×. Figure 6.7 shows the Chernoff information as a
function of received signal amplitude for a binary signaling scheme, a quaternary signal-
ing scheme with uniform bit-energy, and the optimal allocation scheme of Figure 6.6. We
gather from Figure 6.7 that using a fixed signaling scheme may result in a performance
loss. For instance, a binary signaling scheme impairs performance when the signal-to-noise
ratio is high. Correspondingly, quaternary signaling with uniform bit-energy underper-
forms at low signal-to-noise ratios. Channel state information at the sensor nodes increases
overall performance by allowing for the adaptation of the signaling schemes of the indi-
vidual sensor nodes based on the fading levels of their respective communication chan-
nels.

For encoded systems, this requirement entails using error-correcting codes with unequal
bit protection. Numerical results suggest that Rayleigh fading only degrades performance
slightly in well-designed systems. The quality of the random variables observed at the
sensor nodes has a much greater impact on the probability of error at the fusion center
than fading. The situation where the observations at the nodes or the gains of the wireless
channels are not identically distributed across nodes is more difficult to address. Symmetry
is lost and each node can then tailor its transmission function based on the distributions of
its own observations and channel profile.
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6.5 New Paradigms

Recently, researchers have started to explore new paradigms for detection over wireless sen-
sor networks. These alternate points of view offer vastly different solutions to the problem
of distributed sensing. The disparity among the proposed solutions can be explained in
part by the perceived operation of future wireless sensor networks. Some researchers envi-
sion sensor networks to be produced as application-specific systems, giving the designer
more freedom on how to best use resources. Under this assumption, every component of
the network can be engineered anew. In particular, the communication infrastructure of
the system and the modulation scheme employed by the sensors may be selected without
constraints. Yet others believe that sensor networks will be subject to standard protocols
and specifications, effectively imposing a rigid structure on the system. The exchange of
information over future wireless networks may very well be governed by specifications
similar to the Internet protocol suite (TCP/IP) or the Wi-Fi standard (IEEE 802.11). While
more restrictive, the latter philosophy insures the inter-operability of heterogeneous network
components and it allows for mass production and cost reduction. These aspects are key
elements of the future success of wireless sensor technology according to many experts.
The TinyOS community leads a commendable effort to create and maintain resources for
generic wireless sensor nodes. TinyOS is an embedded operating system that is designed
to incorporate rapid innovation and to operate within the severe constraints inherent to
wireless sensor technology. It is intended to run on many academic and proprietary sensor
node implementations. This may eventually be a catalyst for a dominating standard.

6.5.1 Constructive Interference

Adopting the application-specific viewpoint, Mergen and Tong (2005b) have proposed com-
munication schemes for decentralized detection where nodes take advantage of the physical
layer to transmit information efficiently and reliably. Their communication paradigms
exploit the intrinsic broadcast nature of the wireless medium. When complete channel
state information is available at the sensor nodes, it is possible for signals originating from
various nodes to interfere constructively at the receiver through beam-forming. Recall that
for binary detection with conditionally independent observations, an optimal decision-rule
at the fusion center is a threshold test on the sum of individual likelihood functions. In
a wireless environment, the superposition of multiple signals is equivalent to adding their
amplitudes. This property can therefore be employed to sum the local likelihood ratios pro-
duced by individual sensors through the wireless channel. The fusion center can then make
a final decision by applying a threshold test on the amplitude of the received aggregate
signal. In this model, the wireless medium is used both to communicate information to the
fusion center and to add signals coherently. This greatly reduces the spectral bandwidth
requirement for the system. Physical-layer schemes are found to be asymptotically optimal
as the number of sensors increases, provided that the channels from the sensors to the
fusion center are statistically identical.

In related research initiatives, Mergen and Tong (2005a, 2006) propose communication
schemes in which sensor nodes transmit according to the type of their observations. This
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strategy can be applied to decentralized parameter estimation and decentralized detection
alike. The type-based multiple-access schemes lead to significant gains in performance when
compared to the conventional architecture allocating orthogonal channels to the sensors.
A similar concept is studied by Liu and Sayeed (2004). They consider a source-channel
mapping in which every node uses the same encoder. Again, the proposed technique exploits
the shared structure of the multiple-access channel to transmit data to the fusion center.
The information from the sensors is collectively embedded in the conditional mean of the
received signals. Based on the level of the received signal, the fusion center is able to
make a decision. The authors show that the error exponent associated with a type-based
multiple-access approach in Bayesian hypothesis testing coincides with the error exponent
for the centralized setting where the fusion center has direct access to the observations.
These observations are related to the pioneering work of Ahlswede and Csiszar (1986),
where hypothesis testing based on the type of a sequence of observations is shown possible
for vanishing average transmission rates. The broadcast nature of the wireless channel
is exploited in a similar fashion by Hong and Scaglione (2005); Hong et al. (2005). In
their work, the authors take advantage of the additive nature of a wireless multiple-access
channel to address the problems of synchronization, cooperative broadcast, and decision
making in sensor networks.

Under suitable channel conditions, constructive interference techniques over multiple-
access channels provide an interesting solution to the problems of decentralized detection
and decentralized parameter estimation. However, certain technical issues such as syn-
chronization need to be addressed before such techniques can be exploited effectively.
Furthermore, authentication and encryption cannot readily be applied to transmissions while
using constructive interference.

6.5.2 Message Passing

A second paradigm that may reduce the need for spectral bandwidth is based on local mes-
sage passing. In the message-passing approach, there is no designated fusion center and the
goal is for all the sensors involved in the decision process to reach a consensus about the
state of their environment. Every sensor possesses the same prior probability distribution
about the true hypothesis and they share a common objective. They update their tentative
decision whenever they make a new observation or when they receive additional informa-
tion from a neighboring wireless sensor. Upon computing a new tentative decision, to a
randomly selected subset of neighbors. Sensors can exchange messages in a synchronous
or asynchronous manner until consensus is reached. The design problem is to find com-
munication protocols for communication between the sensors that results in an agreement
in a reasonable time. This should be achieved while respecting the constraints imposed
on the communication structure and on the system resources. Conditions for asymptotic
convergence of the decision sequence made by each sensor and for asymptotic agreement
among all the wireless nodes are of interest.

This line of work is heavily influenced by the pioneering work of Borkar and Varaiya
(1982), and the companion work by Tsitsiklis and Athans (1984) on distributed estimation.
To facilitate analysis, the sensor network is modeled as a graph that represents the connec-
tivity of various nodes. The reach of a wireless sensor is primarily limited by the power of
its antenna. As such, sensors are often assumed to be linked only to proximate neighbors.
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Pearl’s belief propagation algorithm (Pearl 1988) is studied by Alanyali and Saligrama as
a possible mechanism for the local exchange of informative data (Szymanski and Yener
2004). In message-passing, data generally take the form of a node’s conditional marginal
probability distribution over the possible hypotheses. Alanyali and Saligrama identify con-
ditions under which sensors reach a consensus. They also discuss circumstances that force
this consensus to be equivalent to the decision of a centralized maximum a posteriori
detector. Advantages of the message-passing paradigm include a simple communication
infrastructure, scalability, robustness to sensor failures, and a possible efficient use of the
limited system resources.

6.5.3 Cross-Layer Considerations

In the previous section, we presented local message-passing as a way to mitigate the effects
of path loss and fading in wireless communications. Another way is for the nodes to exploit
a multi-hop communication scheme where data packets are relayed from sensor to sensor
until they reach their respective destinations. Although a multi-hop strategy necessitates
more transmissions, the non-linear attenuation intrinsic to wireless channels insures overall
savings (Chamberland 2005; Kawadia and Kumar 2005).

If the data generated by the sensor nodes are to be conveyed over a multi-hop packet
network, a few key observations are in order. In the context of decentralized detection,
several studies point to the fact that most of the information provided by an observation
can be compressed to a very few bits (Chamberland and Veeravalli 2004a; Chen et al. 2004;
Luo 2005; Luo and Tsitsiklis 1994). Accordingly, the performance loss due to quantization
decays rapidly as the number of information bits per transmission increases. Data packets
carrying sensor information can then be assumed to contain only a few bits without much
loss of generality. The exact number of bits per packet is unlikely to be a significant factor
in energy consumption in view of the operations that take place at the onset of a wireless
connection (Rappaport 2001; Tong et al. 2004), and also taking into consideration the size
of a typical packet header (Stevens 1993). A similar phenomenon can be observed in other
real-time applications such as voice-over IP, interactive games, and instant messaging. The
payload of a packet in these situations is nearly of the same size or even smaller than its
header. It is therefore safe to assume that once a communication link is established between
two sensor nodes, the information content of an observation can be transferred essentially
unaltered. This characteristic leads to an all-or-nothing model for data transmission akin to
the one put forth by Rago et al. (1996), which is discussed in more detail in the following
section.

6.5.4 Energy Savings via Censoring and Sleeping

As seen in Section 6.3, a generic sensor node comprises four subsystems: a sensing unit,
a microprocessor, a communication unit, and a power supply. Once the components of a
sensor node are fixed, the only way to reduce the average power consumption at the node
is to shut off some of its units periodically. Assuming that the sensing unit is coupled to
the microprocessor and that the operation of the communication unit is contingent on the
microprocessor being active, a wireless sensor node has three broad modes of operation.
It can be active, with all of its units powered up. Alternatively, it can be in mute mode
with its communication unit off, effectively isolating itself temporarily from the rest of the
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Table 6.2 Modes of operation.

Modes of Microprocessor Communication
operation unit

Active on on
Mute on off
Sleeping off off

network. Finally, it can be sleeping with all of its units shut. The three modes of operation
of a sensor node are summarized in Table 6.2. In most sensor networks, substantial energy
savings may be achieved by having nodes communicate with the rest of the network only
when necessary. For example, it may be best for a node to avoid sending data when the
information content of a transmission is small (Appadwedula et al. 2005; Jiang and Chen
2005; Rago et al. 1996; Schurgers et al. 2002). While censoring sensors is a straightfor-
ward scheme to save energy, a less intuitive one consists in shutting off the sensor node
completely whenever the information content of its next few observations is likely to be
small.

Sensor nodes can take advantage of past observations and a priori knowledge about
the stochastic processes they are monitoring to save energy and enhance performance.
A small hit in performance can result in considerable energy savings for a decentralized
detection system. For example, a minimal increase in expected detection delay can more
than double the expected lifetime of the sensor node (Chamberland and Veeravalli 2003a).
This result provides support for control policies in which wireless sensor nodes enter long
sleep intervals whenever the information content of the next few observations is likely to
be small. Conceptually, the sensor node uses a priori knowledge about the process it is
monitoring together with its current and past observations to reduce energy consumption.
More specifically, when the event of interest becomes very unlikely, sensor nodes can
afford to go to sleep for an extended period of time, thus saving energy. On the other hand,
when in a critical situation, sensor nodes must stay awake.

6.6 Extensions and Generalizations

The detection problems described thus far are static problems in which the sensors receive
either a single observation or a single block of observations and a binary decision needs to
be made at the fusion center. Many extensions and generalizations of this formulation are
possible.

The case of M-ary detection (with M > 2) is of interest in many applications. For
example, we may be interested in not simply detecting the presence of an object but
classifying it into one of several categories. Extensions to M-ary detection of the classical
decentralized detection problem are discussed by Sadjadi (1986); Tsitsiklis (1988). More
recent work in the context of modern sensor networks is described in, e.g., D’Costa et al.
(2004); Wang et al. (2005).

In the dynamic setting, each sensor receives a sequence of successive observations and
the detection system has the option of stopping at any time and make a final decision, or to
continue taking observations. The simplest problem in this setting is that of decentralized
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binary sequential detection. A decentralized version of binary sequential detection, where
sensors make final decisions (linked through a common cost function) at different stopping
times is studied in Teneketzis and Ho (1987); Veeravalli et al. (1994b). Ad hoc fusion
of sequential decisions made at the sensors is considered by Hussain (1994). A more
general formulation of the fusion problem was introduced by Hashemi and Rhodes (1989),
and a complete solution to this problem was given in Veeravalli (1999); Veeravalli et al.
(1994a).

A different binary sequential decision-making problem that first arose in quality control
applications is the change detection problem. Here the distribution of the observations
changes abruptly at some unknown time, and the goal is to detect the change ‘as soon
as possible’ after its occurrence, subject to constraints on the false alarm probability. A
decentralized formulation of the change detection problem is considered by Crow and
Schwartz (1996); Teneketzis and Varaiya (1984) with the sensors implementing individual
change detection procedures. Ad hoc schemes for fault detection with multiple observers are
proposed by Wang and Schwartz (1994). A general formulation of decentralized change
detection with a fusion center making the final decision about the change is given in
Veeravalli (1999, 2001).

The design of optimal decision rules for decentralized detection problems is based on the
assumption that the probability distributions of the sensor observations (under each hypoth-
esis) are known. In many applications, however, the distributions of the sensor observations
are only specified as belonging to classes which are referred to as uncertainty classes. The
problem here is to design decision rules that are robust with respect to uncertainties in
the distributions. A common approach for such a design is the minimax approach where
the goal is to minimize the worst-case performance over the uncertainty classes. Exten-
sions of the minimax robust detection problem to the decentralized setting are discussed in
Geraniotis and Chau (1990); Veeravalli et al. (1994a). Alternatives to robust detection when
partial information is available about the distributions, include composite testing based on
generalized likelihood ratios, locally optimal testing for weak signals, and nonparametric
detection (Poor 1998). For a discussion of some of these approaches and their relationship
to censoring tests, see Appadwedula et al. (2007).

6.7 Conclusion

Detection problems provide a productive starting point for the study of more general sta-
tistical inference problems in sensor networks. In this chapter we reviewed the classical
framework for decentralized detection and argued that while this framework provides a
useful basis for developing a theory for detection in sensor networks, it has serious limita-
tions. In particular, the classical framework does not adequately take into account important
features of sensor technology and of the communication link between the sensors and the
fusion center. We discussed an alternative framework for detection in sensor networks that
has emerged over the last few years. Several design and optimization strategies may be
gleaned from the alternative framework, including:

• The jointly optimum solution for the sensor mappings and fusion rule is complicated
and does not scale well with the number of sensors. The focus should therefore be
on good suboptimum solutions that are robust and scalable.
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• In the regime of large numbers of sensors, softening the optimization metric to max-
imize error exponents rather than minimizing error probabilities can lead to scalable,
tractable solutions.

• A key to obtaining scalable solutions is a decoupling of the optimization problem
across the sensors, i.e., the sensor mappings are chosen to optimize local metrics.

• The number (density) of sensors should be considered a system design parameter
that needs to be optimized before deployment. This is particularly important when
the sensor observations are conditionally correlated.

• The modes of operation of sensor (sleeping, censoring, etc.) should be fully exploited
to minimize resource consumption while meeting application performance criteria.

• The communication protocols within the network should be designed with due con-
sideration to the detection application, e.g., some bits are more important than others.

Finally, while much progress has been made towards the understanding of detection
problems in sensor networks using the emerging framework described in this chapter, many
interesting questions remain, including:

• How do we obtain observation statistics? How do we design adaptive and robust
strategies that can work even when such statistics are incomplete or partially known?

• How should the sensor outputs be communicated in the network? Is it necessary to
convert the outputs to bits or packets?

• What is the role of error control coding applied to the sensor outputs? What is the
tradeoff between using additional bits to protect sensor outputs versus transmitting
more information about the observation?

• How much do we gain by allowing the sensors to communicate with each other in
the fusion configuration?

• What is the right architecture for the network in the context of detection applications?
Decentralized with fusion or distributed?
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Distributed Estimation under
Bandwidth and Energy
Constraints1

Alejandro Ribeiro, Ioannis D. Schizas, Jin-Jun Xiao,
Georgios B. Giannakis and Zhi-Quan Luo

In parameter estimation problems a sequence of observations {x(n)}Nn=1 is used to estimate
a random or deterministic parameter of interest s. Optimal estimation exploits the statistical
dependence between x(n) and s that is described either by the joint probability distribution
function (pdf) p(x(n), s) when s is assumed random; or by a family of observation pdfs
p(x(n); s) parameterized by s when s is assumed deterministic. The optimal estimator
function producing an estimate ŝ for a given set of observations {x(n)}Nn=1 is different for
random and deterministic parameters. It also depends on the joint pdf p(x(n), s) (or family
of pdfs p(x(n); s)) and the degree of knowledge about them; i.e., whether they are known,
dependent on some other (nuisance) parameters, or completely unknown (Kay 1993).

The distributed nature of a WSN implies that observations are collected at different
sensors and consequently it dictates that between collection and estimation a communication
is present. If bandwidth and power were unlimited, the x(n) observations could be conveyed
with arbitrary accuracy and, intuitively, no major impact would be expected. However,
bandwidth and power are limited, and the seemingly innocuous communication stage turns
out to have a significant impact on the design of optimal estimators and their performance
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2006.
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assessed by the estimator variance. On the one hand, if digital communications are to
be employed, individual observations have to be quantized, transforming the estimation
problem into that of estimating s using a set of quantized observations – certainly different
from estimating s using the original analog-amplitude observations. On the other hand,
since components of the (vector) observation x(n) are typically correlated, bandwidth and
power constraints can be effected by transmitting vectors y(n) with smaller dimensionality
than that of x(n).

As the discussion in the previous paragraph suggests, the distributed nature of observa-
tions coupled with stringent bandwidth and power constraints so that estimation in WSNs
requires: (i) a means of combining local sensor observations is in order to reduce their
dimensionality while keeping the estimation MSE as small as possible; (ii) quantization
of the combined observations prior to digital transmission; and (iii) construction of esti-
mators based on the quantized digital messages. While addressing these issues jointly is
challenging, the present chapter describes recent advances pertaining to all these three
requirements.

7.1 Distributed Quantization-Estimation

Consider a WSN consisting of N sensors deployed to estimate a scalar deterministic param-
eter s. The nth sensor observes a noisy version of s given by

x(n) = s + w(n), n ∈ [0, N − 1], (7.1)

where w(n) denotes zero-mean noise with pdf pw(w), that is known possibly up to a finite
number of unknown parameters. We further assume that w(n1) is independent of w(n2)

for n1 �= n2; i.e., noise variables are independent across sensors.
Due to bandwidth limitations, the observations x(n) have to be quantized and estimation

of s can only be based on these quantized values. We will henceforth think of quantization
as the construction of a set of indicator variables

bk(n) = 1{x(n) ∈ Bk(n)}, k ∈ [1, K], (7.2)

taking the value 1 when x(n) belongs to the region Bk(n) ⊂ RM , and 0 otherwise. Estima-
tion of s will rely on this set of binary random variables {bk(n), k ∈ [1, K]}N−1

n=0 . The latter
are Bernoulli distributed with parameters qk(n) satisfying

qk(n) := Pr{bk(n) = 1} = Pr{x(n) ∈ Bk(n)}. (7.3)

In the ensuing sections, we will present the Cramér-Rao Lower Bound (CRLB) to bench-
mark the variance of all unbiased estimators ŝ constructed using the binary observations
{bk(n), k ∈ [1, K]}N−1

n=0 . We will further show that it is possible to find maximum likelihood
estimators (MLEs) that (at least asymptotically) are known to achieve the CRLB. Finally,
we will reveal that the CRLB based on {bk(n), k ∈ [1, K]}N−1

n=0 can come surprisingly close
to the clairvoyant CRLB based on {x(n)}N−1

n=0 in certain applications of practical interest.

7.2 Maximum Likelihood Estimation

Let us start by assuming that pw(w) is known and let Fw(u) := ∫∞
u

pw(w) dw denote the
complementary cumulative distribution function (CCDF) of the noise. With the pdf known,
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it suffices to rely on a single region B1(n) in (7.2) to generate a single bit b1(n) per sensor,
using a threshold τc common to all N sensors: B1(n) := Bc = (τc,∞), ∀n. Based on these
binary observations, b1(n) := 1{x(n) ∈ (τc,∞)} received from all N sensors, the fusion
center (FC) seeks estimates of s.

An expression for the MLE of s follows readily from the following argument. Using
(7.3), we can express the Bernoulli parameter as

q1 =
∫ ∞

τc−s

pw(w)dw = Fw(τc − s). (7.4)

On the other hand, it is well known that the MLE of q1 is given by q̂1 = N−1 ∑N−1
n=0 b1(n)

(Kay 1993, p. 200). These two facts combined with the invariance property of MLE (Kay
1993, p. 173), readily yield the MLE of s as (Ribeiro and Giannakis 2006a):

ŝ = τc − F−1
w

(
1

N

N−1∑
n=0

b1(n)

)
. (7.5)

It can be further shown that the CRLB on the variance of any unbiased estimator ŝ based
on {b1(n)}N−1

n=0 is (Ribeiro and Giannakis 2006a)

var(ŝ) ≥ 1

N

Fw(τc − s)[1 − Fw(τc − s)]

p2
w(τc − s)

:= B(s). (7.6)

If the noise is Gaussian and we define the σ -distance between the threshold τc and the
(unknown) parameter s as �c := (τc − s)/σ , then (7.6) reduces to

B(s) = σ 2

N

2πQ(�c)[1 − Q(�c)]

e−�2
c

:= σ 2

N
D(�c), (7.7)

with Q(u) := (1/
√

2π)
∫∞
u

e−w2/2 dw denoting the Gaussian tail probability function
(Figure 7.1).

The bound B(s) is the variance of x := N−1 ∑N−1
n=0 x(n), scaled by the factor D(�c) –

recall that var(x) = σ 2/N (Kay 1993, p.31). Optimizing B(s) with respect to �c, yields
the optimum at �c = 0 and the minimum CRLB as

Bmin = π

2

σ 2

N
. (7.8)

Eq. (7.8) reveals something unexpected: relying on a single bit per x(n), the estimator
in (7.5) incurs a minimal (just a π/2 factor) increase in its variance relative to the clair-
voyant x which relies on the unquantized data x(n). But this minimal loss in performance
corresponds to the ideal choice �c = 0, which implies τc = s and requires perfect knowl-
edge of the unknown s for selecting the quantization threshold τc. How do we select τc

and how much do we lose when the unknown s lies anywhere in (−∞,∞), or when s lies
in [S1, S2], with S1, S2 finite and known a priori? Intuition suggests selecting the threshold
as close as possible to the unknown parameter s. This can be realized with an iterative
estimator ŝ(i), which can be formed as in (7.5), using τ

(i)
c = ŝ(i−1), the parameter estimate

from the previous (i − 1)st iteration.
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Figure 7.1 CRLB in (7.7) for the estimation of s in (7.1) when the noise is Gaussian.
The minimum CRLB is Bmin = (π/2)σ 2/N , just π/2 times larger than the variance of the
sample mean estimator. The increase is exponential in �c := (τc − s)/σ , though.

But in the batch formulation considered herein, selecting τc is challenging; and a closer
look at B(s) in (7.6) will confirm that the loss can be huge if τc − s � 0. Indeed, as
τc − s → ∞ the denominator in (7.6) goes to zero faster than its numerator, since Fw

is the integral of the non-negative pdf pw; and thus, B(s) → ∞ as τc − s → ∞. The
implication of the latter is twofold: (i) since it shows up in the CRLB, the potentially high
variance of estimators based on quantized observations is inherent to the possibly severe
bandwidth limitations of the problem itself and is not unique to a particular estimator;
ii) for any choice of τc, the fundamental performance limits in (7.6) are dictated by the
end points τc − S1 and τc − S2 when s is confined to the interval [S1, S2]. On the other
hand, how successful the τc selection is depends on the dynamic range |S1 − S2| which
makes sense because the latter affects the error incurred when quantizing x(n) to b1(n).
Notice that in such joint quantization-estimation problems one faces two sources of error:
quantization and noise. To account for both, the proper figure of merit for estimators
based on binary observations is what we will term quantization signal-to-noise ratio (Q-
SNR):

γ := |S1 − S2|2
σ 2

; (7.9)

Notice that contrary to common wisdom, the smaller Q-SNR is, the easier it becomes to
select τc judiciously. Furthermore, the variance increase in (7.6) relative to the variance of
the clairvoyant x is smaller, for a given σ . This is because as the Q-SNR increases the
problem becomes more difficult in general, but the rate at which the variance increases is
smaller for the CRLB in (7.6) than for var(x) = σ 2/N .

7.2.1 Known Noise pdf with Unknown Variance

Perhaps more common than a perfectly known pdf is the case when the noise pdf is
known except for its variance E[w2(n)] = σ 2. Introducing the standardized variable v(n) :=
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w(n)/σ we write the signal model as

x(n) = s + σv(n). (7.10)

Let pv(v) and Fv(v) := ∫∞
v

pv(u)du denote the known pdf and CCDF of v(n). Note
that according to its definition, v(n) has zero mean, E[v2(n)] = 1, and the pdfs of v and
w are related by pw(w) = (1/σ )pv(w/σ). Note also that all two parameter pdfs can be
standardized likewise.

To estimate s when σ is also unknown while keeping the bandwidth constraint to 1
bit per sensor, we divide the sensors in two groups each using a different region (i.e.,
threshold) to define the binary observations:

B1(n) :=
{

(τ1,∞) := B1, for n = 0, . . . , (N/2) − 1
(τ2,∞) := B2, for n = (N/2), . . . , N.

(7.11)

That is, the first N/2 sensors quantize their observations using the threshold τ1, while the
remaining N/2 sensors rely on the threshold τ2. Without loss of generality, we assume
τ2 > τ1.

The Bernoulli parameters of the resultant binary observations can be expressed as [c.f.
(7.4)]:

q1(n) :=
{

Fv

[
τ1−s

σ

]
:= q1 for n = 0, . . . , (N/2) − 1,

Fv

[
τ2−s

σ

]
:= q2 for n = (N/2), . . . , N.

(7.12)

Given the noise independence across sensors, the MLEs of q1, q2 can be found, respec-
tively, as

q̂1 = 2

N

N/2−1∑
n=0

b1(n), q̂2 = 2

N

N−1∑
n=N/2

b1(n). (7.13)

Mimicking (7.5), we can invert Fv in (7.12) and invoke the invariance property of MLEs to
obtain the MLE ŝ in terms of q̂1 and q̂2. This estimator is given in the following proposition
along with its CRLB (Ribeiro and Giannakis 2006b).

Proposition 7.2.1 Consider estimating s in (7.10), based on binary observations con-
structed from the regions defined in (7.11).

(a) The MLE of s is

ŝ = F−1
v (q̂2)τ1 − F−1

v (q̂1)τ2

F−1
v (q̂2) − F−1

v (q̂1)
, (7.14)

with F−1
v denoting the inverse function of Fv , and q̂1, q̂2 given by (7.13).

(b) The variance of any unbiased estimator of s, var(ŝ), based on {b1(n)}N−1
n=0 is bounded

by

B(s) := 2σ 2

N

(
�1�2

�2 − �1

)2 [
q1 (1 − q1)

p2
v(�1)�

2
1

+ q2 (1 − q2)

p2
v(�2)�

2
2

]
(7.15)

where qk is given by (7.12), and

�k := τk − s

σ
, k = 1, 2, (7.16)

is the σ -distance between s and the threshold τk .
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Figure 7.2 Per bit CRLB when the binary observations are independent and dependent,
respectively. In both cases, the variance increase with respect to the sample mean estimator
is small when the σ -distances are close to 1, being slightly better for the case of dependent
binary observations (Gaussian noise).

Eq. (7.15) is reminiscent of (7.6), suggesting that the variances of the estimators they
bound are related. This implies that even when the known noise pdf contains unknown
parameters, the variance of ŝ can come close to the variance of the clairvoyant estimator
x, provided that the thresholds τ1, τ2 are chosen close to s relative to the noise standard
deviation (so that �1, �2, and �2 − �1 in (7.16) are ≈ 1). For the Gaussian pdf, Figure 7.2
shows the contour plot of B(s) in (7.15) normalized by σ 2/N := var(x). Notice that in
the low Q-SNR regime �1, �2 ≈ 1, and the relative variance increase B(s)/var(x) is less
than 3. This is illustrated by the simulations shown in Figure 7.3 for two different sets
of σ -distances, �1, �2, corroborating the values predicted by (7.15) and the fact that the
performance loss with respect to the clairvoyant sample mean estimator, x, is indeed small.

Dependent binary observations

In the previous subsection, we restricted the sensors to transmit only 1 bit per x(n) datum,
and divided the sensors in two classes each quantizing x(n) using a different threshold. A
related approach is to let each sensor use two thresholds:

B1(n) := B1 = (τ1,∞), n = 0, 1, . . . , N − 1,

B2(n) := B2 = (τ2,∞), n = 0, 1, . . . , N − 1 (7.17)

where τ2 > τ1. We define the per sensor vector of binary observations b(n) := [b1(n),

b2(n)]T , and the vector Bernoulli parameter q := [q1(n), q2(n)]T , whose components are
as in (7.12).

Note the subtle differences between (7.11) and (7.17). While each of the N sensors
generates 1 binary observation according to (7.11), each sensor creates 2 binary observa-
tions as per (7.17). The total number of bits from all sensors in the former case is N , but
in the latter N log2 3, since our constraint τ2 > τ1 implies that the realization b = (0, 1)

is impossible. In addition, all bits in the former case are independent, whereas correlation
is present in the latter since b1(n) and b2(n) come from the same x(n). Even though one
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Figure 7.3 Noise of unknown power estimator. The simulation corroborates the close to
clairvoyant variance prediction of (7.15) (σ = 1, s = 0, Gaussian noise).

would expect this correlation to complicate matters, a property of the binary observations
defined as per (7.17), summarized in the next lemma, renders estimation of s based on
them feasible.

Lemma 7.2.2 The MLE of q := (q1(n), q2(n))T based on the binary observations {b(n)}N−1
n=0

constructed according to (7.17) is given by

q̂ = 1

N

N−1∑
n=0

b(n). (7.18)

Interestingly, (7.18) coincides with (7.13), proving that the corresponding estimators of
s are identical; i.e., (7.14) yields also the MLE ŝ even in the correlated case. However,
as the following proposition asserts, correlation affects the estimator’s variance and the
corresponding CRLB (Ribeiro and Giannakis 2006b).

Proposition 7.2.3 Consider estimating s in (7.10), when σ is unknown, based on binary
observations constructed from the regions defined in (7.17). The variance of any unbiased
estimator of s, var(ŝ), based on {b1(n), b2(n)}N−1

n=0 is bounded by

BD(s) := σ 2

N

(
�1�2

�2 − �1

)2 [
q1 (1 − q1)

p2
v(�1)�

2
1

+ q2 (1 − q2)

p2
v(�2)�

2
2

− q2 (1 − q1)

pv(�1)p(�2)�1�2

]
, (7.19)

where the subscript D in BD(s) is used as a mnemonic for the dependent binary observations
this estimator relies on [c.f. (7.15)].

Unexpectedly, (7.19) is similar to (7.15). Actually, a fair comparison between the two
requires compensating for the difference in the total number of bits used in each case. This
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Figure 7.4 When the noise pdf is unknown numerically integrating the CCDF using the
trapezoidal rule yields an approximation of the mean.

can be accomplished by introducing the per-bit CRLBs for the independent and correlated
cases respectively,

C(s) = NB(s), CD(s) = N log2(3)BD(s), (7.20)

which lower bound the corresponding variances achievable by the transmission of a sin-
gle bit.

Evaluation of C(s)/σ 2 and CD(s)/σ 2 follows from (7.15), (7.19) and (7.20) and is
depicted in Figure 7.2 for Gaussian noise and σ -distances �1, �2 having amplitude as
large as 5. Somewhat surprisingly, both approaches yield very similar bounds with the one
relying on dependent binary observations being slightly better in the achievable variance;
or correspondingly, in requiring a smaller number of sensors to achieve the same CRLB.

7.3 Unknown Noise pdf

In certain applications it may not be reasonable to assume knowledge about the noise pdf
pw(w). These cases require nonparametric approaches as the one pursued in this section.

We assume that pw(w) has zero mean so that s in (7.1) is identifiable. Let px(x) and
Fx(x) denote the pdf and CCDF of the observations x(n). As s is the mean of x(n), we
can write

s :=
∫ +∞

−∞
xpx(x) dx = −

∫ +∞

−∞
x

∂Fx(x)

∂x
dx =

∫ 1

0
F−1

x (v) dv, (7.21)

where in establishing the second equality we used the fact that the pdf is the negative
derivative of the CCDF, and in the last equality we introduced the change of variables
v = Fx(x). But note that the integral of the inverse CCDF can be written in terms of the
integral of the CCDF as (see also Figure 7.4)

s = −
∫ 0

−∞
[1 − Fx(u)] du +

∫ +∞

0
Fx(u) du, (7.22)

allowing one to express the mean s of x(n) in terms of its CCDF. To avoid carrying out
integrals with infinite range, let us assume that x(n) ∈ (−T , T ) which is always practically
satisfied for T sufficiently large, so that we can rewrite (7.22) as

s =
∫ T

−T

Fx(u) du − T . (7.23)
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Numerical evaluation of the integral in (7.23) can be performed using a number of known
techniques. Let us consider an ordered set of interior points {τk}Kk=1 along with end-points
τ0 = −T and τK+1 = T . Relying on the fact that Fx(τ0) = Fx(−T ) = 1 and Fx(τK+1) =
Fx(T ) = 0, application of the trapezoidal rule for numerical integration yields (see also
Figure 7.4)

s = 1

2

K∑
k=1

(τk+1 − τk−1)Fx(τk) − T + ea, (7.24)

with ea denoting the approximation error. Certainly, other methods like Simpson’s rule, or
the broader class of Newton-Cotes formulas, can be used to further reduce ea .

Whichever the choice, the key is that binary observations constructed from the region
Bk := (τk,∞) have Bernoulli parameters

qk := Pr{x(n) > τk} = Fx(τk). (7.25)

Inserting the nonparametric estimators F̂x(τk) = q̂k in (7.24), our parameter estimator when
the noise pdf is unknown takes the form:

ŝ = 1

2

K∑
k=1

q̂k(τk+1 − τk−1) − T . (7.26)

Since q̂k’s are unbiased, (7.24) and (7.26) imply that E(ŝ) = s + ea . Being biased, the
proper performance indicator for ŝ in (7.26) is the mean squared error (MSE), not the
variance.

Maintaining the bandwidth constraint of 1 bit per sensor (i.e., K = 1), we divide the
N sensors in K subgroups containing N/K sensors each, and define the regions

B1(n) := Bk = (τk,∞), n = (k − 1)(N/K), . . . , k(N/K) − 1; (7.27)

Region B1(n) will be used by sensor n to construct and transmit the binary observation
b1(n). Herein, the unbiased estimators of qk are

q̂k = 1

(N/K)

k(N/K)−1∑
n=(k−1)(N/K)

b1(n), k = 1, . . . , K, (7.28)

and are used in (7.26) to estimate s. It is easy to verify that var(q̂k) = qk(1 − qk)/(N/K),
and that q̂k1 and q̂k2 are independent for k1 �= k2.

The resultant MSE, E[(s − ŝ)2], can be bounded as follows (Ribeiro and Giannakis
2006b).

Proposition 7.3.1 Consider ŝ given by (7.26), with q̂k as in (7.28). Assume that for T

sufficiently large and known px(x) = 0, for |x| ≥ T , the noise pdf has bounded deriva-
tive ṗw(u) := ∂pw(w)/∂w; and define τmax := maxk{τk+1 − τk} and ṗmax := maxu∈(−T ,T )

{ṗw(u)}. The MSE is given by

E[(s − ŝ)2] = |ea|2 + var(ŝ), (7.29)
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with the approximation error ea and var(ŝ), satisfying

|ea| ≤ T ṗmax

6
τ 2

max, (7.30)

var(ŝ) =
K∑

k=1

(τk+1 − τk−1)
2

4

qk(1 − qk)

N/K
, (7.31)

with {τk}Kk=1 a grid of thresholds in (−T , T ) and {qk}Kk=1 as in (7.25).

Note from (7.31) that the larger contributions to var(ŝ) occur when qk ≈ 1/2, since this
value maximizes the coefficients qk(1 − qk); equivalently, this happens when the thresholds
satisfy τk ≈ s [cf. (7.25)]. Thus, as with the case where the noise pdf is known, when s

belongs to an a-priori known interval [s1, s2], this knowledge must be exploited in selecting
thresholds around the likeliest values of s.

On the other hand, note that the var(ŝ) term in (7.29) will dominate |ea|2 because
|ea|2 ∝ τ 4

max as per (7.30). To clarify this point, consider an equispaced grid of thresholds
with τk+1 − τk = τ = τmax, ∀k, such that τmax = 2T /(K + 1) < 2T /K . Using the (loose)
bound qk(1 − qk) ≤ 1/4, the MSE is bounded by [cf. (7.29)–(7.31)]

E[(s − ŝ)2] <
4T 6ṗ2

max

9K4
+ T 2

N
. (7.32)

The bound in (7.32) is minimized by selecting K = N , which amounts to having each
sensor use a different region to construct its binary observation. In this case, |ea|2 ∝ N−4

and its effect becomes practically negligible. Moreover, most pdfs have relatively small
derivatives; e.g., for the Gaussian pdf we have ṗmax = (2πeσ 4)−1/2. The integration error
can be further reduced by resorting to a more powerful numerical integration method,
although its difference with respect to the trapezoidal rule will not have noticeable impact
in practice.

Since K = N , the selection τk+1 − τk = τ , ∀k, yields

ŝ = τ

N−1∑
n=0

b1(n) − T = T

[
2

N + 1

N−1∑
n=0

b1(n) − 1

]
, (7.33)

that does not require knowledge of the threshold used to construct the binary observations at
the FC of a WSN. This feature allows each sensor to randomly select its threshold without
using values pre-assigned by the FC; see also (Luo 2005a) for related random quantization
algorithms which also yielded universal (in the noise variance) parameter estimators based
on severely quantized WSN data.

Remark 1 While e2
a ∝ T 6 seems to dominate var(ŝ) ∝ T 2 in (7.32), this is not true for

the operational low-to-medium Q-SNR range for distributed estimators based on binary
observations. This is because the support 2T over which Fx(x) in (7.23) is non-zero depends
on σ and the dynamic range |S1 − S2| of the parameter s. And as the Q-SNR decreases,
T ∝ σ . But since ṗmax ∝ σ−2, e2

a ∝ σ 2/N4 which is negligible when compared to the term
var(ŝ) ∝ σ 2/N .
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Apart from providing useful bounds on the finite-sample performance, eqs. (7.30), (7.31),
and (7.32) establish asymptotic optimality of the ŝ estimators in (7.26) and (7.33) as sum-
marized in the following:

Corollary 7.3.2 Under the assumptions of Propositions 7.3.1 and the conditions: i) τmax ∝
K−1; and ii) T 2/N, T 6/K4 → 0 as T , K, N → ∞, the estimators ŝ in (7.26) and (7.33)
are asymptotically (as K, N → ∞) unbiased and consistent in the mean-square sense.

The estimators in (7.26) and (7.33) are consistent even if the support of the data pdf
is infinite, as long as we guarantee a proper rate of convergence relative to the number of
sensors and thresholds.

Remark 2 To compare the estimators in (7.5) and (7.33), consider that s ∈ [S1, S2] =
[−σ, σ ], and that the noise is Gaussian with variance σ 2, yielding a Q-SNR γ = 4. No
estimator can have variance smaller than var(x) = σ 2/N ; however, for the (medium) γ = 4
Q-SNR value they can come close. For the known pdf estimator in (7.5), the variance is
var(ŝ) ≈ 2σ 2/N . The unknown pdf estimator in (7.33) requires an assumption about the
essentially non-zero support of the Gaussian pdf. If we suppose that the noise pdf is non-
zero over [−2σ, 2σ ], the corresponding variance becomes var(ŝ) ≈ 9σ 2/N . The penalties
due to the transmission of a single bit per sensor with respect to x are approximately 2 and
9. While the increasing penalty is expected as the uncertainty about the noise pdf increases,
the relatively small loss is rather unexpected.

Figure 7.5 depicts theoretical bounds and simulated variances for the estimators (7.5)
and (7.33) for an example Q-SNR γ = 4. The sample mean estimator variance, var(x) =
σ 2/N , is also depicted for comparison purposes. The simulations corroborate the impli-
cations of Remark 3, reinforcing the assertion that for low to medium Q-SNR problems
quantization to a single bit per observation leads to minimal losses in variance performance.
Note that for this particular example, the unknown pdf variance bound, (7.32), overesti-
mates the variance by a factor of roughly 1.2 for the uniform case and roughly 2.6 for the
Gaussian case.
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Figure 7.5 The variance of the estimators in (7.5) and (7.33) are close to the sample mean
estimator variance (σ 2 := E[w2(n)] = 1, T = 3, s ∈ [−1, 1]).
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7.3.1 Lower Bound on the MSE

In Section 7.2 we derived the CRLB offering the fundamental lower bound on the achievable
variance and the MLE that approaches this bound as N increases. In contrast, (7.32) is an
upper bound on the MSE of the estimator in (7.33). The counterpart of the CRLB for
estimation based on binary observations when the pdf is unknown is a lower bound in the
MSE achievable by any estimator.

To obtain this bound we start from the CRLB when the noise pdf is known that we
introduced in (7.6). We then maximize this CRLB with respect to the noise pdf and the
local quantization rules to obtain a lower bound on the MSE performance of any estimator
when the pdf is unknown. The result is summarized in the following proposition (Xiao
et al. 2007).

Proposition 7.3.3 Consider the signal model in (7.1); x(n) observations belonging to the
interval (−T , T ); i.e., x(n) ∈ [−T , T ]; and let each sensor communicate one binary obser-
vation b(n) as per (7.2). Then, for any estimator ŝ of s relying on {b(n)}N−1

n=0 there exists a
noise pdf such that

E[(s − ŝ)2] ≥ T 2

4N
. (7.34)

Proposition 7.3.3 implies that no estimator based on quantizated samples down to a
single bit per sensor can attain an MSE smaller than T 2/4N . Comparing (7.32) with (7.34)
we deduce that the estimator in (7.33) is optimal up to a constant factor of 4.

7.4 Estimation of Vector Parameters

Consider now the case of a physical phenomenon characterized by a set of p parameters
that we lump in to the vector s := [s1, . . . , sp]T . As before, we wish to find s, by deploying
a WSN composed of N sensors {Sn}N−1

n=0 , with each sensor observing s through a linear
transformation

x(n) = Hns + w(n), (7.35)

where x(n) := [x1(n), . . . , xM(n)]T ∈ RM is the measurement vector at sensor Sn, w(n) ∈
RM is zero-mean additive noise with pdf pw(w) and the matrices Hn ∈ RM×P .

As in (7.2), we define the binary observation bk(n) as the indicator function of x(n)

belonging to the region Bk(n) ⊂ RM :

bk(n) = 1{x(n) ∈ Bk(n)}, k ∈ [1, K], (7.36)

We then define the per sensor vector of binary observations b(n) := [b1(n), . . . , bK(n)]T ,
and note that since its entries are binary, realizations y of b(n) belong to the set

B := {β ∈ RK | [β]k ∈ {0, 1}, k ∈ [1, K]}, (7.37)

where [β]k denotes the kth component of β. With each β ∈ B and each sensor we now
associate the region

Bβ (n) :=
⋂

[β]k=1

Bk(n)
⋂

[β ]k=0

Bk(n), (7.38)



7.4. ESTIMATION OF VECTOR PARAMETERS 161

x1

x2

B{0,0} (n)

B{0,1} (n)
B{1,0} (n)

B{1,1} (n)

B2(n)

B1(n)

x1

x2

B2(n)

B1(n)

Hns

e1(n)

τ2(n)

e2(n)

τ1(n)

Figure 7.6 (Left): The vector of binary observations b takes on the value {y1, y2} if and
only if x(n) belongs to the region B{y1,y2}(n); (Right): Selecting the regions Bk(n) perpen-
dicular to the covariance matrix eigenvectors results in independent binary observations
when the noise is Gaussian.

where Bk(n) denotes the set-complement of Bk(n) in RM . Note that the definition in (7.38)
implies that x(n) ∈ Bβ(n) if and only if b(n) = β; see also Figure 7.6 (Left) for an illus-
tration in R2 (M = 2). The corresponding probabilities are

qβ(n) := Pr{b(n) = β} =
∫

Bβ (n)

pw[u − Hns] du. (7.39)

Using definitions (7.39) and (7.37), we can write the pertinent log-likelihood function as

L(s) =
N−1∑
n=0

∑
β∈B

δ(b(n) − β) ln qβ (n), (7.40)

and the MLE of s as
ŝ = arg max

s
L(s). (7.41)

The nonlinear search needed to obtain ŝ could be challenging. Fortunately, as the following
proposition asserts, under certain conditions that are usually met in practice, L(s) is concave
which implies that computationally efficient search algorithms can be invoked to find its
global maximum (Ribeiro and Giannakis 2006b).

Proposition 7.4.1 If the MLE problem in (7.41) satisfies the conditions:

[c1] The noise pdf pw(w) is log-concave (Boyd and Vandenberghe 2004, p.104)

[c2] The regions Bk(n) are chosen as half-spaces.

then L(s) in (7.40) is a concave function of s.

Note that [c1] is satisfied by common noise pdfs, including the multivariate Gaus-
sian (Boyd and Vandenberghe 2004, p.104). On the other hand, [c2] places a constraint in
the regions defining the binary observations, which is simply up to the designer’s choice.
The merits of having a concave log-likelihood function are summarized in the following
remark.
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Remark 3 The numerical search needed to obtain ŝ could be challenged either by the
multimodal nature of L(s) or by numerical ill-conditioning caused by e.g., saddle points.
But when the log-concavity conditions in Proposition 7.4.1 are satisfied, computationally
efficient search algorithms like e.g., Newton’s method are guaranteed to converge to the
global maximum (Boyd and Vandenberghe 2004, Chap. 2).

7.4.1 Colored Gaussian Noise

Analyzing the performance of the MLE in (7.41) is only possible asymptotically (as N or
SNR go to infinity). Notwithstanding, when the noise is Gaussian, simplifications ren-
der variance analysis tractable and lead to interesting guidelines for constructing the
estimator ŝ.

Restrict pw(w) to the class of multivariate Gaussian pdfs, and let C(n) denote the
noise covariance matrix at sensor n. Assume that {C(n)}N−1

n=0 are known and let {(em(n),
σ 2

m(n))}Mm=1 be the set of eigenvectors and associated eigenvalues

C(n) =
M∑

m=1

σ 2
m(n)em(n)eT

m(n). (7.42)

For each sensor, we define a set of K = M regions Bk(n) as half-spaces whose borders
are hyper-planes perpendicular to the covariance matrix eigenvectors; i.e.,

Bk(n) = {x ∈ RM | eT
k (n)x ≥ τk(n)}, k = 1, . . . , K = M, (7.43)

Figure (7.6) (Right) depicts the regions Bk(n) in (7.43) for M = 2. Note that since each
entry of x(n) offers a distinct scalar observation, the selection K = M amounts to a band-
width constraint of 1 bit per sensor per dimension.

The rationale behind this selection of regions is that the resultant binary observations
bk(n) are independent, meaning that Pr{bk1(n)bk2(n)} = Pr{bk1(n)} Pr{bk2(n)} for k1 �= k2.
As a result, we have a total of MN independent binary observations to estimate s.

Herein, the Bernoulli parameters qk(n) take on a particularly simple form in terms of
the Gaussian tail function

qk(n) =
∫

eT
k

(n)u≥τk(n)

pw(u − Hns) du = Q

(
τk(n) − eT

k (n)Hns
σk(n)

)
:= Q[�k(n)], (7.44)

where we introduced the σ -distance between Hns and the corresponding threshold �k(n) :=
[τk(n) −eT

k (n)Hns]/σk(n).
Due to the independence among binary observations we have p(b(n))=∏K

k=1 [qk(n)]bk(n)

[1 − qk(n)]1−bk(n), leading to

L(s) =
N−1∑
n=0

K∑
k=1

bk(n) ln qk(n) + [1 − bk(n)] ln[1 − qk(n)], (7.45)

whose NK independent summands replace the N2K dependent terms in (7.40).
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Since the regions Bk(n) are half-spaces, Proposition 7.4.1 applies to the maximization
of (7.45) and guarantees that the numerical search for the ŝ estimator in (7.45) is well-
conditioned and will converge to the global maximum. More important, it will turn out that
these regions render finite sample performance analysis of the MLE in (7.41), tractable.
In particular, it is possible to derive a closed-form expression for the Fisher Information
Matrix (FIM) (Kay 1993, p.44), as we outline next; see (Ribeiro and Giannakis 2006b) for
detailed derivations.

Proposition 7.4.2 The FIM, I, for estimating s based on the binary observations obtained
from the regions defined in (7.43), is given by

I =
N−1∑
n=0

HT
n

[
K∑

k=1

e−�2
k(n)ek(n)eT

k (n)

2πσ 2
k (n)Q(�k(n))[1 − Q(�k(n))]

]
Hn. (7.46)

Inspection of (7.46) shows that the variance of the MLE in (7.41) depends on the signal
function containing the parameter of interest (via Hn), the noise structure and power (via the
eigenvalues and eigenvectors), and the selection of the regions Bk(n) (via the σ -distances).
Among these three factors only the last one is inherent to the bandwidth constraint, the
other two being common to the estimator that is based on the original x(n) observations.

The last point is clarified if we consider the FIM Ix for estimating s given the unquan-
tized vector x(n). This matrix can be shown to be (Ribeiro and Giannakis 2006b, Appendix.
D),

Ix =
N−1∑
n=0

HT
n

[
M∑

m=1

em(n)eT
m(n)

σ 2
m(n)

]
HT

n . (7.47)

If we define the equivalent noise powers as

ρ2
k (n) := 2πQ(�k(n))[1 − Q(�k(n))]

e−�2
k
(n)

σ 2
k (n), (7.48)

we can rewrite (7.46) in the form

I =
N−1∑
n=0

HT
n

[
K∑

k=1

ek(n)eT
k (n)

ρ2
k (n)

]
HT

n , (7.49)

which except for the noise powers has form identical to (7.47). Thus, comparison of (7.49)
with (7.47) reveals that from a performance perspective, the use of binary observations
is equivalent to an increase in the noise variance from σ 2

k (n) to ρ2
k (n), while the rest of

the problem structure remains unchanged. Since we certainly want the equivalent noise
increase to be as small as possible, minimizing (7.48) over �k(n) calls for this distance
to be set to zero, or equivalently, to select thresholds τk(n) = eT

k (n)Hns. In this case, the
equivalent noise power is

ρ2
k (n) = π

2
σ 2

k (n). (7.50)

Surprisingly, even in the vector case a judicious selection of the regions Bk(n) can result in
a very small penalty (π/2) in terms of the equivalent noise increase. Similar to Section 7.2,
we can thus claim that while requiring the transmission of 1 bit per sensor per dimension,
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x0

x1

φ(n)

n
v

Figure 7.7 The vector flow v incises over a certain sensor capable of measuring the normal
component of v.

the variance of the MLE in (7.41), based on {b(n)}N−1
n=0 , yields a variance close to the

clairvoyant estimator’s variance – which is based on {x(n)}N−1
n=0 – for low-to-medium Q-

SNR problems.

Example 7.4.3 Suppose we wish to estimate a vector flow using incidence observations.
With reference to Figure 7.7, consider the flow vector v := (v0, v1)

T , and a sensor positioned
at an angle φ(n) with respect to a known reference direction. We will rely on a set of so
called incidence observations {x(n)}N−1

n=0 measuring the component of the flow normal to the
corresponding sensor

x(n) := 〈v, n〉 + w(n) = v0 sin[φ(n)] + v1 cos[φ(n)] + w(n), (7.51)

where 〈, 〉 denotes inner product, w(n) is zero-mean AWGN, and n = 0, 1, . . ., N − 1 is
the sensor index. The model (7.51) applies to the measurement of hydraulic fields, pressure
variations induced by wind and radiation from a distant source (Mainwaring et al. 2002).

Estimating v fits the framework presented in this section requiring the transmission of a
single binary observation per sensor, b1(n) = 1{x(n) ≥ τ1(n)}. The FIM in (7.49) is easily
found to be

I =
N−1∑
n=0

1

ρ2
1 (n)

(
sin2[φ(n)] sin[φ(n)] cos[φ(n)]

sin[φ(n)] cos[φ(n)] cos2[φ(n)]

)
. (7.52)

Furthermore, since x(n) in (7.51) is linear in v and the noise pdf is log-concave (Gaussian)
the log-likelihood function is concave as asserted by Proposition 7.4.1.

Suppose that we are able to place the thresholds optimally as implied by τ1(n) = v0

sin[φ(n)] +v1 cos[φ(n)], so that ρ2
1 (n) = (π/2)σ 2. If we also make the reasonable assump-

tion that the angles are random and uniformly distributed, φ(n) ∼ U [−π, π ], then the
average FIM turns out to be:

I = 2

πσ 2

(
N/2 0

0 N/2

)
. (7.53)

But according to the law of large numbers I ≈ I, and the estimation variance will be approx-
imately

var(v0) = var(v1) = πσ 2

N
. (7.54)
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Figure 7.8 Average variance for the components of v. The empirical as well as the
bound (7.54) are compared with the analog observations based MLE (v = (1, 1), σ = 1).

Figure 7.8 depicts the bound (7.54), as well as the simulated variances var(v̂0) and var(v̂1)

in comparison with the clairvoyant MLE based on {x(n)}N−1
n=0 , corroborating our analytical

expressions.

7.5 Maximum a Posteriori Probability Estimation

The parameter of interest s was so far assumed deterministic. Consequently, the MLE was
considered as the optimum estimator and the CRLB as the ultimate performance limit.
An alternative formulation is to use available a priori knowledge to model s as a random
vector parameter with a priory pdf ps(s), estimate s using a maximum a posteriori (MAP)
probability estimator, and regard the MSE as the performance indicator. We will show in
this section that despite the different formulation we can obtain results similar to those
described in Section 7.4.

Let us recall the observation model in (7.35), denote the mean of s as E(s) := µs
and suppose the noise vector is white and Gaussian i.e., E[w(n)wT (n)] = diag[σ 2

1 (n), . . . ,

σ 2
M(n)]. In this case, we write Hn := [hn1, . . . , hnM ]T and define the (independent) binary

observations b(n) := [b1(n), . . ., bM(n)] as

bk(n) := 1{xk(n) > hT
nkµs} , (7.55)

for k ∈ [1, M]. The resemblance with the problem of Section 7.4 is clear and not surpris-
ingly the following proposition holds true (Shah et al. 2005).

Proposition 7.5.1 Consider a vector parameter s, with log-concave prior distribution ps(s),
the model in (7.35) with pw(w) white Gaussian with E[w(n)wT (n)] = diag[σ 2

1 (n), . . . ,
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σ 2
M(n)]; and binary messages {b(n)}N−1

n=0 as in (7.55). Then, if we define the per sensor
log-likelihood Ln(s) as

Ln(s) =
M∑

k=1

ln Q

(
bk(n)hT

nk

[
µs − s

]
σk(n)

)
. (7.56)

(a) The MAP estimator of s based on {b(n)}N−1
n=0 is given by

ŝMAP = arg max

[
N−1∑
n=0

Ln(s)

]
+ ln[ps(s)] := arg max L(s). (7.57)

(b) The log-likelihood L(s) is a concave function of s.

Proposition 7.5.1 establishes that at least for white Gaussian noise the comments in Re-
mark 3 carry over to MAP based parameter estimation. In fact, Proposition 7.5.1 has been
established under much more general assumptions, including the case of colored Gaussian
noise (Shah et al. 2005).

7.5.1 Mean-Squared Error

For estimation of random parameters bounds on the MSE can be obtained by computing
the pertinent Fisher Information Matrix (FIM) J that can be expressed as the sum of two
parts (Van Trees 1968, p. 84):

J = JD + JP , (7.58)

where JD represents information obtained from the data, and JP captures a priori infor-
mation. The MSE of the ith component of s is bounded by the ith diagonal element of J;
i.e.,

MSE(ŝi) ≥ [
J−1]

ii
. (7.59)

Also, note that for any FIM, [J−1]ii ≥ 1/[J]ii (Kay 1993). This property yields a different
bound on MSE(ŝi)

MSE(ŝi) ≥ 1

[ J ]ii
, (7.60)

which is easier to compute although not tight in general.
The following proposition provides a bound (exact value) on [J]ii when binary (analog-

amplitude) observations are used (Shah et al. 2005).

Proposition 7.5.2 Consider the signal model in (7.35) with w(n) white Gaussian with
covariance matrix E[w(n)wT (n)] = diag[σ 2

1 (n), . . . , σ 2
M(n)] and Gaussian prior distribu-

tion with covariance E[ssT ] = Cs. Write (7.35) componentwise as xk(n) = hT
nks + wk(n).

Then, the ith diagonal element of the FIM J in (7.58) satisfies:

(a) when binary observations as in (7.55) are used

[ J ]ii ≥ 2

π

N−1∑
n=0

M∑
k=1

h2
nki

σk(n)

√
σ 2

k (n) + hT
nkCshnk

+ [
C−1

s

]
ii

(7.61)
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(b) when analog-amplitude observations are used

[JCV]ii =
N−1∑
n=0

M∑
k=1

h2
nki

σ 2
k (n)

+ [
C−1

s

]
ii

. (7.62)

Comparing (7.61) with (7.62) the analogy with the result in Proposition 7.4.2 becomes
clear. Indeed, we can define the equivalent noise powers as

ρ2
k (n) = π

2
σ 2

w

√
1 + hT

nkCshnk

σ 2
k (n)

(7.63)

so that we can express the bound in (7.61) as

[JCV]ii =
N−1∑
n=0

M∑
k=1

h2
nki

ρ2
k (n)

+ [
C−1

s

]
ii

. (7.64)

As in the case of deterministic parameters, the effect of quantization in MSE is equivalent
to a noise power increase from σ 2

k (n) to ρ2
k (n) [cf. (7.62) and (7.64)]. In the case of

random signals, the average SNR of the observations xk(n) is well defined and given
by γnk := hT

nkCshnk/σ
2
k (n). Using the latter and (7.64), we infer that the equivalent noise

increase is

Lk(n) := ρ2
k (n)

σ 2
k (n)

= π

2

√
1 + γnk. (7.65)

Note that as γnk → 0, the information loss Lk(n) → π/2 corroborating the results in
Section 7.4 for deterministic parameter estimation. In any event, it is worth re-iterating
the remarkable fact that for low to medium SNR γ , the equivalent noise increase LK is
small.

7.6 Dimensionality Reduction for Distributed Estimation

In this section, we consider linear distributed estimation of random signals when the sen-
sors observe and transmit analog-amplitude data. Consider the WSN depicted in Figure 7.9,
comprising N sensors linked with an FC. Each sensor, say the nth one, observes an
Mn × 1 vector xn that is correlated with a p × 1 random signal of interest s. Through a
kn × Mn fat matrix Cn, each sensor transmits a compressed kn × 1 vector Cnxn, using e.g.,
multicarrier modulation with one entry riding per subcarrier. Low-power and bandwidth
constraints at the sensors encourage transmissions with kn � Mn, while linearity in com-
pression and estimation are well motivated by low-complexity requirements. Furthermore,
we assume that:

(a1) No information is exchanged among sensors, and each sensor-FC link comprises
a kn × kn full rank fading multiplicative channel matrix Dn along with zero-mean
additive FC noise zn, which is uncorrelated with xn, Dn, and across channels; i.e.,
noise covariance matrices satisfy �zn1 zn2

= 0 for n1 �= n2. Matrices {Dn, �znzn}N−1
n=0

are available at the FC but not at the sensors.



168 DISTRIBUTED ESTIMATION UNDER CONSTRAINTS

Figure 7.9 Distributed setup for estimating a random signal s.

(a2) Data xn and the signal of interest s are zero-mean with full rank auto- and cross-
covariance matrices �ss , �sxn and �xn1 xn2

∀ n1, n2 ∈ [0, N − 1], all of which are
available at the FC.

If sensors communicate with the FC using multicarrier modulation, full rank of the
channel matrices {Dn}N−1

n=0 is ensured if sensors do not transmit over subcarriers with zero
channel gain. Matrices {Dn}N−1

n=0 can be acquired via training, and likewise the signal and
noise covariances in (a1) and (a2) can be estimated via sample averaging as usual. With
multicarrier (and generally any orthogonal) sensor access, the noise uncorrelatedness across
channels is also well justified.

Sensors transmit over orthogonal channels so that the FC separates and concatenates
the received vectors {yn(Cn) = DnCnxn + zn}N−1

n=0 , to obtain the
∑N−1

n=0 kn × 1 vector

y(C0, . . . , CN−1) = diag(D0C0, . . . , DN−1CN−1)x + z, (7.66)

Left multiplying y by a p × (
∑N−1

n=0 kn) matrix B, we form the linear estimate ŝ of s. For
a prescribed power Pn per sensor, our problem is to obtain under (a1)-(a2) MSE optimal
matrices {Co

n}N−1
n=0 and Bo; i.e., we seek (tr denotes matrix trace)

(Bo, {Co
n}N−1

n=0 ) = arg minB,{Cn}N−1
n=0

E[‖s − By(C0, . . . , CN−1)‖2],

s. to tr(Cn�xnxnC
T
n ) ≤ Pn, n ∈ {0, . . . , N − 1}. (7.67)

The FC finds and communicates {Co
n}N−1

n=0 to the sensors for them to form Co
nxn. This

communication takes place during the startup phase or whenever the data (cross-) correla-
tions change. Note that Co

nxn involves a matrix-vector multiplication whose complexity is
O(knMn) with kn < Mn, and can be afforded by the sensors.

7.6.1 Decoupled Distributed Estimation-Compression

We consider first the case where �xnxm ≡ 0, ∀n �= m, which shows up e.g., when matrices
{Hn}N−1

n=0 in the linear model xn = Hns + wn are mutually uncorrelated and also uncorrelated
with wn. Then, the multi-sensor optimization task in (7.67) reduces to a set of N decoupled
problems. Specifically, it is easy to show that the cost function in (7.67) can be written as
(Schizas et al. 2007)

J (B, {Cn}N−1
n=0 ) = ∑N−1

n=0 E[‖s − Bn(DnCnxn + zn)‖2] − (N − 1)tr(�ss) (7.68)
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where Bn is the p × kn submatrix of B := [B0 . . .BN−1]. As the nth non-negative summand
depends only on Bn and Cn, the MSE optimal matrices are given by

(Bo
n, Co

n) = arg minBn,Cn E[‖s − Bn(DnCnxn + zn)‖2],

s. to tr(Cn�xnxnC
T
n ) ≤ Pn, n ∈ {0, . . . , N − 1}. (7.69)

Since the cost function in (7.69) corresponds to a single-sensor setup (N = 1), we will drop
the subscript n for notational brevity and write Bn = B, Cn = C, xn = x, zn = z, Pn = P

and kn = k. The Lagrangian for minimizing (7.68) can be easily written as:

J (B, C, µ) = Jo + tr(B�zzBT ) + µ[tr(C�xxCT ) − P ]

+ tr[(�sx − BDC�xx)�
−1
xx (�xs − �xxCT DT BT )], (7.70)

where Jo := tr(�ss − �sx�
−1
xx �xs) is the minimum attainable MMSE for linear estimation

of s based on x.
In what follows, we derive a simplified form of (7.70) the minimization of which will

provide closed-form solutions for the MSE optimal matrices Bo and Co. Aiming at this
simplification, consider the SVD �sx = UsxSsx VT

sx , and the eigen-decompositions �zz =
Qz�zQT

z and DT �−1
zz D = Qzd�zdQT

zd , where �zd := diag(λzd,1 · · ·λzd,k) and λzd,1 ≥
· · · ≥ λzd,k > 0. Notice that λzd,i captures the SNR of the ith entry in the received sig-
nal vector at the FC. Further, define A := QT

x VsxST
sx SsxVT

sxQx with ρa := rank(A) =
rank(�sx), and Ax := �−1/2

x A�−1/2
x with corresponding eigen-decomposition Ax =

Qax�axQax , where �ax = diag(λax,1, · · · , λax,ρa , 0, · · · , 0) and λax,1 ≥ . . . ≥ λax,ρa > 0.
Moreover, let Va := �−1/2

x Qax denote the invertible matrix which simultaneously diago-
nalizes the matrices A and �x . Since matrices (Qzd , Qx, Va, Usx, �zd , Qzd , D, �zz) are all
invertible, for every matrix C (or B) we can clearly find a unique matrix �C (correspond-
ingly �B ) that satisfies:

C = Qzd�CVT
a QT

x , B = Usx�B�−1
zd QT

zdDT �−1
zz , (7.71)

where �C := [φc,ij ] and �B have sizes k × M and p × k, respectively. Using (7.71), the
Lagrangian in (7.70) becomes

J (�C, µ) = Jo + tr(�ax) + µ(tr(�C�T
C) − P ) (7.72)

− tr
(
(�−1

zd + �C�T
C)−1�C�ax�

T
C

)
.

Applying the well-known Karush-Kuhn-Tucker (KKT) conditions (e.g., (Boyd and Vanden-
berghe 2004, Ch. 5)) that must be satisfied at the minimum of (7.72), it can be shown that
the matrix �o

C minimizing (7.72), is diagonal with diagonal entries (Schizas et al. 2007)

φo
c,ii =

 ±
√(

λax,i

µoλzd,i

)1/2 − 1
λzd,i

, 1 ≤ i ≤ κ

0, κ + 1 ≤ i ≤ k

(7.73)

where κ is the maximum integer in [1, k] for which {φo
c,ii}κi=1 are strictly positive, or,

rank(�o
C) = κ; and µo is chosen to satisfy the power constraint

∑κ
i=1(φ

o
c,ii )

2 = P as

µo = (
∑κ

i=1(λax,iλ
−1
zd,i)

1/2)2

(P +∑κ
i=1 λ−1

zd,i)
2

. (7.74)
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When k > ρa , the MMSE remains invariant (Schizas et al. 2007); thus, it suffices to con-
sider k ∈ [1, ρa]. Summarizing, it has been established that:

Proposition 7.6.1 Under (a1), (a2), and for k ≤ ρa , the matrices minimizing J (Bp×k,

Ck×M) = E[‖s − Bp×k(DCk×Mx + z)‖2], subject to tr(Ck×M�xx CT
k×M) ≤ P , are:

Co = Qzd�
o
CVT

a QT
x , (7.75)

Bo = �sxQxVa�
o
C

T
(
�o

C�o
C

T + �−1
zd

)−1
�−1

zd QT
zdD

T �−1
zz ,

where �o
C is given by (7.73), and the corresponding Lagrange multiplier µo is specified by

(7.74). The MMSE is

Jmin(k) = Jo +
ρa∑
i=1

λax,i −
k∑

i=1

λax,i(φ
o
c,ii )

2

λ−1
zd,i + (φo

c,ii )
2 . (7.76)

According to Proposition 7.6.1, the optimal weight matrix �o
C in Co distributes the given

power across the entries of the pre-whitened vector VT
a Qxx at the sensor in a waterfilling-

like manner so as to balance channel strength and additive noise variance at the FC with the
degree of dimensionality reduction that can be afforded. It is worth mentioning that (7.73)
dictates a minimum power per sensor. Specifically, in order to ensure that rank(�o

C) = κ

the power must satisfy

P >

∑κ
i=1(λax,iλ

−1
zd,i)

1/2√
λax,κλzd,κ

−
κ∑

i=1

λ−1
zd,i . (7.77)

The optimal matrices in Proposition 7.6.1 can be viewed as implementing a two-step
scheme, where: i) s is estimated based on x at the sensor using the LMMSE estimate
ŝLM = �sx�

−1
xx x; and

ii) compress and reconstruct ŝLM using the optimal matrices Co and Bo implied by Propo-
sition 7.6.1 after replacing x with ŝLM . For this estimate-first compress-afterwards (EC)
interpretation, (Schizas et al. 2007) have proved that:

Corollary 7.6.2 For k ∈ [1, ρa], the k × M matrix in (7.75) can be written as Co = Ĉo�sx

�−1
xx , where Ĉo is the k × p optimal matrix obtained by Proposition 7.6.1 when x = ŝLM .

Thus, the EC scheme is MSE optimal in the sense of minimizing (7.68).

Another interesting feature of the EC scheme implied by Proposition 7.6.1 is that the
MMSE Jmin(k) is non-increasing with respect to the reduced dimensionality k, given a
limited power budget per sensor. Specifically, (Schizas et al. 2007) have shown that that:

Corollary 7.6.3 If Co
k1×M and Co

k2×M are the optimal matrices determined by Proposition
7.6.1 with k1 < k2, under the same channel parameters λzd,i for i = 1, . . . , k1, and common
power P , the MMSE in (7.76) is non-increasing; i.e., Jmin(k1) ≥ Jmin(k2) for k1 < k2.

Notice that Corollary 7.6.3 advocates the efficient power allocation that the EC scheme
performs among the compressed components. To assess the difference in handling noise
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effects, it is useful to compare the EC scheme with the methods in (Zhu et al. 2005) which
we abbreviate as C′E, and (Zhang et al. 2003) abbreviated as EC-d. Although C′E and EC-d
have been derived under ideal link conditions, they can be modified here to account for Dn.
The comparisons will further include an option we term CE, which compresses first the data
and reconstructs them at the FC using Co and Bo found by (7.75) after setting s = x, and
then estimates s based on the reconstructed data vector x̂. For benchmarking purposes, we
also depict Jo, achieved when estimating s based on uncompressed data transmitted over
ideal links. Figure 7.10 (Left) depicts the MMSE versus k for Jo, EC, CE, C′E and EC-d for
a linear model x = Hs + w, where M = 50 and p = 10. The matrices H, �ss and �ww, are
selected randomly such that tr(H�ssHT )/tr(�ww) = 2, while s and w are uncorrelated. We
set �zz = σ 2

z Ik , and select P such that 10 log10(P/σ 2
z ) = 7dB. As expected Jo benchmarks

all curves, while the worst performance is exhibited by C′E. Albeit suboptimal, CE comes
close to the optimal EC. Contrasting it with the increase EC-d exhibits in MMSE beyond
a certain k, we can appreciate the importance of coping with noise effects. This increase is
justifiable since each entry of the compressed data in EC-d is allocated a smaller portion of
the given power as k grows. In EC, however, the quality of channel links and the available
power determine the number of the compressed components, and allocate power optimally
among them.

7.6.2 Coupled Distributed Estimation-Compression

In this section, we allow the sensor observations to be correlated. Because �xx is no longer
block diagonal, decoupling of the multi-sensor optimization problem cannot be effected in
this case. The pertinent MSE cost is [cf. (7.67)]

J ({Bn, Cn}N−1
n=0 ) = E[‖s −∑N−1

n=0 Bn(DnCnxn + zn)‖2]. (7.78)

Minimizing (7.78) does not lead to a closed-form solution and incurs complexity that grows
exponentially with N (Luo et al. 2005). For this reason, we resort to iterative alternatives
which converge at least to a stationary point of the cost in (7.78). To this end, let us
suppose temporarily that matrices {Bl}N−1

l=0,l �=n and {Cl}N−1
l=0,l �=n are fixed and satisfy the

power constraints tr(Cl�xlxl
CT

l ) = Pl , for l = 0, . . . , N − 1 and l �= n. Upon defining the
vector sn := s −∑N−1

l=0,l �=n(BlDlClxl + Blzl) the cost in (7.78) becomes

J (Bn, Cn) = E[‖sn − BnDnCnxn − Bnzn‖2] , (7.79)

which being a function of Cn and Bn only, falls under the realm of Proposition 7.6.1.
This means that when {Bl}N−1

l=0,l �=n and {Cl}N−1
l=0,l �=n are given, the matrices Bn and Cn min-

imizing (7.79) under the power constraint tr(Cn�xnxnC
T
n ) ≤ Pn can be directly obtained

from (7.75), after setting s = sn, x = xn, z = zn and ρa = rank(�snxn) in Proposition 7.6.1.
The corresponding auto- and cross-covariance matrices needed must also be modified as
�ss = �snsn and �sxn = �snxn . The following result can thus be established for coupled
sensor observations:

Proposition 7.6.4 If (a1) and (a2) are satisfied, and further kn ≤ rank(�snxn), then for given
matrices {Bl}N−1

l=0,l �=n and {Cl}N−1
l=0,l �=n satisfying tr(Cl�xlxl

CT
l ) = Pl , the optimal Bo

n and Co
n

matrices minimizing E[‖s −∑N−1
l=0 Bl (DlClxl + zl )‖2] are provided by Proposition 7.6.1,

after setting x = xn, s = sn and applying the corresponding covariance modifications.
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Algorithm 1 :

Initialize randomly the matrices {C(0)
n }N−1

n=0 and {B(0)
n }N−1

n=0 , such that tr(C(0)
n �xnxnC

(0)T

n ) =
Pn.
i = 0
repeat

i = i + 1
for n = 0, N − 1 do

Given the matrices C(i)
0 , B(i)

0 , . . . , C(i)
n−1, B(i)

n−1, C(i−1)
n+1 , B(i−1)

n+1 , . . . , C(i−1)
N−1 , B(i−1)

N−1

determine C(i)
n , B(i)

n via Proposition 7.6.1
end for

until |MSE(i) − MSE(i−1)| < ε for given tolerance ε

Proposition 7.6.4 suggests Algorithm 1 for distributed estimation in the presence of
fading and FC noise. Notice that Algorithm 1 belongs to the class of block coordinate
descent iterative schemes. At every step n during the ith iteration, it yields the optimal
pair of matrices Co

n, Bo
n, treating the rest as given. Thus, the MSE(i) cost per iteration is

non-increasing and the algorithm always converges to a stationary point of (7.78). Beyond
its applicability to possibly non-Gaussian and nonlinear data models, it is the only available
algorithm for handling fading channels and generally colored FC noise effects in distributed
estimation.

Next, we illustrate through a numerical example the MMSE performance of Algo-
rithm 1 in a 3-sensor setup using the same linear model as in Section 7.6.1, while setting
M0 = M1 = 17 and M2 = 16. FC noise zn is white with variance σ 2

zn
. The power Pn and

variance σ 2
zn

are chosen such that 10 log10(P/σ 2
zn

) = 13dB, for n = 0, 1, 2, and ε = 10−3.

Figure 7.10 (Right) depicts the MMSE as a function of the total number ktot = ∑2
n=0 kn of

compressed entries across sensors for: i) a centralized EC setup for which a single (virtual)
sensor (N = 1) has available the data vectors of all three sensors; ii) the estimator returned
by Algorithm 1; iii) the decoupled EC estimator which ignores sensor correlations; iv) the
C′E estimator and v) an iterative estimator developed in (Schizas et al. 2007), denoted
here as EC-d, which similar to C′E accounts for fading but ignores noise. Interestingly, the
decentralized Algorithm 1 comes very close to the hypothetical single-sensor bound of the
centralized EC estimator, while outperforming the decoupled EC one.

7.7 Distortion-Rate Analysis

In contrast to the previous section, here we consider digital-amplitude data transmission
(bits) from the sensors to the FC. In such a setup, all the sensors must adhere to a rate
constraint. In order to determine the minimum possible distortion (MSE) between the
signal of interest and its estimate at the FC, under encoding rate constraints, we perform
Distortion-Rate (D-R) analysis and determine bounds for the D-R function.

Figure 7.11 (Left) depicts a WSN comprising N sensors that communicate with an FC.
Each sensor, say the nth, observes an Mn × 1 vector xn(t) which is correlated with a p × 1
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Figure 7.10 MMSE comparisons versus k for a centralized, N = 1 (Left), and a distributed
3-sensor setup (Right).

Figure 7.11 (Left): Distributed setup; (Right): Test channel for x Gaussian in a point-to-
point link.

random signal (parameter vector) of interest s(t), where t denotes discrete time. Similar to
(Oohama 1998; Pandya et al. 2004; Viswanathan and Berger 1997), we assume that:

(a3) No information is exchanged among sensors and the links with the FC are noise-free.

(a4) The random vector s(t) is generated by a stationary Gaussian vector memoryless
source with s(t) ∼ N (0, �ss); the sensor data {xn(t)}N−1

n=0 adhere to the linear-
Gaussian model xn(t) = Hns(t) + wn(t), where wn(t) denotes additive white Gaus-
sian noise (AWGN); i.e., wn(t) ∼ N (0, σ 2I); noise wn(t) is uncorrelated across
sensors, time and with s; and Hn as well as (cross-) covariance matrices �ss , �sxn

and �xnxm are known ∀ n, m ∈ {0, . . . , N − 1}.

Notice that (a3) assumes that sufficiently strong channel codes are used; while whiteness
of wn(t) and the zero-mean assumptions in (a4) are made without loss of generality. The
linear model in (a4) is commonly encountered in estimation and in a number of cases it
even accurately approximates non-linear mappings; e.g., via a first-order Taylor expansion
in target tracking applications. Although confining ourselves to Gaussian vectors xn(t) is
of interest on its own, it can be shown, similarly to (Berger 1971, p. 134), that the D-R
functions obtained for Gaussian data bound from above their counterparts for non-Gaussian
sensor data xn(t).
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Blocks x(L)
n := {xn(t)}Lt=1, comprising L consecutive time instantiations of the vec-

tor xn(t), are encoded per sensor to yield each encoder’s output u(L)
n = f(L)

n (x(L)
n ), n =

0, . . . , N − 1. These outputs are communicated through ideal orthogonal channels to the FC.
There, u(L)

n ’s are decoded to obtain an estimate of s(L) := {s(t)}Lt=1 denoted as ŝ(L)
R (u(L)

0 , . . .

, u(L)
N−1) = g(L)

R (x(L)
0 , . . . , x(L)

N−1), since u(L)
n is a function of x(L)

n . The rate constraint is
imposed through a bound on the cardinality of the range of the sensor encoding func-
tions, i.e., the cardinality of the range of f(L)

n must be no greater than 2LRn , where Rn is
the available rate at the encoder of the nth sensor. The sum rate satisfies the constraint∑N−1

n=0 Rn ≤ R, where R is the total available rate shared by the N sensors. This setup is
precisely the vector Gaussian CEO problem in its most general form without any restric-
tions in the number of observations and the number of parameters (Berger et al. 1996).
Under this rate constraint, we want to determine the minimum possible MSE distortion
(1/L)

∑L
t=1 E[‖s(t) − ŝR(t)‖2] for estimating s in the limit of infinite block-length L.

When N = 1, a single-letter information theoretic characterization is known for the latter,
but no simplification is known for the distributed multi-sensor scenario.

7.7.1 Distortion-Rate for Centralized Estimation

Let us first specify the D-R function for estimating s(t) in a single-sensor setup. The
single-letter characterization of the D-R function in this setup allow us to drop the time
index. Here, all {xn}N−1

n=0 := x are available to a single sensor, and x = Hs + w. We let
ρ := rank(H) denote the rank of matrix H. The D-R function in such a scenario provides
a lower (non-achievable) bound on the MMSE that can be achieved in a multi-sensor
distributed setup, where each xn is observed by a different sensor. Existing works treat the
case M = p (Sakrison 1968; Wolf and Ziv 1970), but here we look for the D-R function
regardless of M, p, in the linear-Gaussian model framework.

D-R analysis for reconstruction

The D-R function for encoding a vector x, with pdf p(x), using rate R at an individual
sensor, and reconstructing it (in the MMSE sense) as x̂ at the FC, is given by (Cover and
Thomas 1991, p. 342):

Dx(R) = min
p(x̂|x)

Ep(x̂,x)[‖x − x̂‖2], s. to I (x; x̂) ≤ R (7.80)

where x ∈ RM and x̂ ∈ RM , and the minimization is w.r.t. the conditional pdf p(x̂|x). Let
�xx = Qx�xQT

x denote the eigenvalue decomposition of �xx , where �x = diag(λx,1 · · ·
λx,M) and λx,1 ≥ · · · ≥ λx,M > 0.

For x Gaussian, Dx(R) can be determined by applying reverse water-filling (rwf) to
the pre-whitened vector xw := QT

x x (Cover and Thomas 1991, p. 348). For a prescribed
rate R, it turns out that ∃ k such that the first k entries {xw(i)}ki=1 of xw are encoded and
reconstructed independently from each other using rate {Ri = 0.5 log2

(
λx,i/d(k, R)

)}ki=1,

where d(k, R) =
(∏k

i=1 λx,i

)1/k

2−2R/k with R = ∑k
i=1 Ri ; and the last M − k entries of

xw are assigned no rate; i.e., {Ri = 0}Mi=k+1. The corresponding MMSE for encoding xw(i),
the ith entry of xw, under a rate constraint Ri , is Di = E[‖xw(i) − x̂w(i)‖2] = d(k, R)
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when i = 1, . . . , k; and Di = λx,i when i = k + 1, . . . , M . The resultant MMSE is

Dx(R) = E[‖x − x̂‖2] = E[‖xw − x̂w‖2] = kd(k, R) +∑M
i=k+1 λx,i . (7.81)

Especially for d(k, R), it follows that max({λx,i}Mi=k+1) ≤ d(k, R) < min{λx,1, . . . , λx,k}.
Intuitively, d(k, R) is a threshold distortion determining which entries of xw are assigned
with nonzero rate. The first k entries of xw with variance λx,i > d(k, R) are encoded with
non-zero rate, but the last M − k ones are discarded in the encoding procedure (are set to
zero).

Associated with the rwf principle is the so called test channel; see e.g., (Cover and
Thomas 1991, p. 345). The encoder’s MSE optimal output is u = QT

x,kx + ζ , where Qx,k

is formed by the first k columns of Qx , and ζ models the distortion noise that results due
to the rate-constrained encoding of x. The zero-mean AWGN ζ is uncorrelated with x and
its diagonal covariance matrix �ζ ζ has entries [�ζ ζ ]ii = λx,iDi/(λx,i − Di). The part of
the test channel that takes as input u and outputs x̂, models the decoder. The reconstruction
x̂ of x at the decoder output is

x̂ = Qx,k�ku = Qx,k�kQT
x,kx + Qx,k�kζ , (7.82)

where �k is a diagonal matrix with non-zero entries [�k]ii = (λx,i−Di)/λx,i , i = 1, . . . , k.

D-R analysis for estimation

The D-R function for estimating a source s given observation x (where the source and
observation are probabilistically drawn from the joint pdf p(x, s)) with rate R at an indi-
vidual sensor, and reconstructing it (in the MMSE sense) as x̂ at the FC is given by (Berger
1971, p. 79)

Ds(R) = min
p(ŝR |x)

Ep(ŝR,s)[‖s − ŝR‖2], s. to I (x; ŝR) ≤ R (7.83)

where s ∈ R
p and ŝR ∈ R

p, and the minimization is w.r.t. the conditional pdf p(ŝR|x).
Different from (7.80), the mutual information I (x; ŝR) and the pdf p(ŝR|x) in (7.83) depend
on x and not on s, which is the signal of interest. The latter reflects the fact that each sensor
observes a distorted version of the source signal, captured in the observation vector x. Thus,
(7.83) denotes the minimum possible estimation MSE that can be achieved for s using the
information incorporated in x, and with an available encoding rate R. In order to achieve
the D-R function, one might be tempted to first compress x by applying rwf at the sensor,
without taking into account the data model relating s with x, and subsequently use the
reconstructed x̂ to form the MMSE conditional expectation estimate ŝce = E[s|x̂] at the
FC. An alternative option would be to first form the MMSE estimate ŝ = E[s|x], encode
the latter using rwf at the sensor, and after decoding at the FC, obtain the reconstructed
estimate ŝec. Referring as before the former option as Compress-Estimate (CE), and to the
latter as Estimate-Compress (EC), we are interested in determining which one yields the
smallest MSE under a rate constraint R. Another interesting question is whether any of the
CE and EC schemes enjoys MMSE optimality (i.e., achieves (7.83)). With subscripts ce

and ec corresponding to these two options, let us also define the errors s̃ce := s − ŝce and
s̃ec := s − ŝec.

For CE, we depict in Figure 7.12 (Top) the test channel for encoding x via rwf, followed
by MMSE estimation of s based on x̂. Suppose that when applying rwf to x with prescribed
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Figure 7.12 (Top): Test channel for the CE scheme.; (Bottom): Test channel for the EC
scheme.

rate R, the first kce components of xw are assigned with non-zero rate and the rest are
discarded. The MMSE optimal encoder’s output for encoding x is uce = QT

x,kce
x + ζ ce.

The covariance matrix of ζ ce has diagonal entries [�ζceζce ]ii = λx,iD
ce
i /(λx,i − Dce

i ) for

i = 1, . . . , kce, where Dce
i := E[(xw(i) − x̂w(i))2]. Since Dce

i =
(∏kce

i=1 λx,i

)1/kce

2−2R/kce

when i = 1, . . . , kce and Dce
i = λx,i , when i = kce + 1, . . . , M , the reconstructed x̂ in CE

is [cf. (7.82)]:
x̂ = Qx,kce�ceQT

x,kce
x + Qx,kce�ceζ ce, (7.84)

where [�ce]ii =(λx,i − Dce
i )/λx,i , for i=1, . . . , kce. Letting x̌ :=QT

x x̂= [x̌T
1 01×(M−kce)]

T ,
with x̌1 := �ceQT

x,kce
x + �ceζ ce, we have for the MMSE estimate ŝce = E[s|x̂]

ŝce = E[s|QT
x x̂] = E[s|x̌1] = �sx̌1�

−1
x̌1 x̌1

x̌1, (7.85)

since QT
x is unitary and the last M − kce entries of x̌ are useless for estimating s. It has

been shown in (Schizas et al. 2005) that the covariance matrix � s̃ce s̃ce := E[(s − ŝce)(s −
ŝce)

T ] = �ss − �sx̌1 �−1
x̌1x̌1

�x̌1s of s̃ce is

� s̃ce s̃ce = �ss − �sx�
−1
xx �xs + �sxQx	ceQT

x �xs, (7.86)

where 	ce := diag
(
Dce

1 λ−2
x,1 · · ·Dce

N λ−2
x,M

)
.

In Figure 7.12 (Bottom) we depict the test channel for the EC scheme. The MMSE
estimate ŝ = E[s|x] is followed by the test channel that results when applying rwf to a pre-
whitened version of ŝ, with rate R. Let � ŝ ŝ = Qŝ�ŝQT

ŝ
be the eigenvalue decomposition for

the covariance matrix of ŝ, where �ŝ = diag(λŝ,1 · · · λŝ,p) and λŝ,1 ≥ · · · ≥ λŝ,p. Suppose
now that the first kec entries of ŝw = QT

ŝ
ŝ are assigned with non-zero rate and the rest

are discarded. The MSE optimal encoder’s output is given by uec = QT
ŝ,kec

ŝ + ζ ec, and the
estimate ŝec is

ŝec = Qŝ,kec
�ecQT

ŝ,kec
ŝ + Qŝ,kec

�ecζ ec, (7.87)

where Qŝ,kec
is formed by the first kec columns of Qŝ . For the kec × kec diagonal matri-

ces sec and �ζecζec we have [sec]ii = (λŝ,i − Dec
i )/λŝ,i and [�ζecζec ]ii = λŝ,iD

ec
i /(λŝ,i −

Dec
i ), where Dec

i := E[(ŝw(i) − ŝec,w(i))2], and ŝec,w := QT
ŝ
ŝec. Recall also that Dec

i =(∏kec

i=1 λŝ,i

)1/kec

2
−2R
kec when i = 1, . . . , kec and Dec

i = λŝ,i , for i = kec + 1, . . . , p. Upon
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defining 	ec := diag
(
Dec

1 · · ·Dec
p

)
, the covariance matrix of s̃ec is given by (Schizas et al.

2005)
� s̃ec s̃ec = �ss − �sx�

−1
xx �xs + Qŝ	ecQT

ŝ
. (7.88)

The MMSE associated with CE and EC is given, respectively, by [cf. (7.86) and (7.88)]

Dce(R) := tr(� s̃ce s̃ce ) = Jo + εce(R),

Dec(R) := tr(� s̃ec s̃ec ) = Jo + εec(R), (7.89)

where εce(R) := tr(�sxQx	ceQT
x �xs), εec(R) := tr(Qŝ	ecQT

ŝ
), and the quantity Jo :=

tr(�ss − �sx�
−1
xx �xs) is the MMSE achieved when estimating s based on x, without source

encoding (R → ∞). Since Jo is common to both EC and CE it is important to compare
εce(R) with εec(R) in order to determine which estimation scheme achieves the smallest
MSE. The following proposition provides such an asymptotic comparison:

Proposition 7.7.1 If

R > Rth := 1

2
max

{
log2

((
ρ∏

i=1

λx,i

)
/σ 2ρ

)
, log2

((
ρ∏

i=1

λŝ,i

)
/ (λŝ,ρ)ρ

)}
,

then it holds that εce(R) = γ12−2R/M and εec(R) = γ22−2R/ρ , where γ1 and γ2 are constants.

An immediate consequence of Proposition 7.7.1 is that the MSE for EC converges
as R → ∞ to Jo with rate O(2−2R/ρ). The MSE of CE converges likewise, but with
rate O(2−2R/M). For the typical case M > ρ, EC approaches the lower bound Jo faster
than CE, implying correspondingly a more efficient usage of the available rate R. This
is intuitively reasonable since CE compresses x, which contains the noise w. Since the
last M − ρ eigenvalues of �xx equal the noise variance σ 2, part of the available rate is
consumed to compress the noise. On the contrary, the MMSE estimator ŝ in EC suppresses
significant part of the noise. For the special case of a scalar data model (M = p = 1) it has
been shown (Schizas et al. 2005) that Dec(R) = Dce(R), while for the vector and matrix
models (M > 1 and/or p > 1) we have determined appropriate threshold rates Rth have
been determined such that Dce(R) > Dec(R) for R > Rth.

If the SNR is defined as SNR = tr(H�ssHT )/Mσ 2, it is possible to compare the MMSE
when estimating s using the CE and EC schemes; see Figure 7.13 (Left). With �ss = σ 2

s Ip,
p = 4 and M = 40, we observe that beyond a threshold rate, the distortion of EC converges
to Jo faster than that of CE, which corroborates Proposition 7.7.1.

The analysis so far raises the question whether EC is MSE optimal. We have seen that
this is the case when estimating s with a given rate R without forcing any assumption about
M and p. A related claim has been reported in (Sakrison 1968; Wolf and Ziv 1970) for
M = p. The extension to M �= p established in (Schizas et al. 2005) can be summarized
as follows:

Proposition 7.7.2 The D-R function when estimating s based on x can be expressed as

Ds(R) = min
p(ŝR |x)

I (x;ŝR)≤R

E[‖s − ŝR‖2] = E[‖s̃‖2] + min
p(ŝR |ŝ)

I (ŝ;ŝR)≤R

E[‖ŝ − ŝR‖2], (7.90)

where ŝ = �sx�
−1
xx x is the MMSE estimator, and s̃ is the corresponding MMSE.
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Proposition 7.7.2 reveals that the optimal means of estimating s is to first form the
optimal MMSE estimate ŝ and then apply optimal rate-distortion encoding to this estimate.
The lower bound on this distortion when R → ∞ is Jo = E[‖s̃‖2], which is intuitively
appealing. The D-R function in (7.90) is achievable, because the rightmost term in (7.90)
corresponds to the D-R function for reconstructing the MMSE estimate ŝ that is known to
be achievable using random coding; see e.g., (Berger 1971, p. 66).

7.7.2 Distortion-Rate for Distributed Estimation

Let us now consider the D-R function for estimating s in a multi-sensor setup, under a total
available rate R which has to be shared among all sensors. Because the analytical specifi-
cation of the D-R function in this case remains intractable, we will present an alternative
algorithm that numerically determines an achievable upper bound for it. Combining this
upper bound with the non-achievable lower bound corresponding to an equivalent single-
sensor setup, and applying the MMSE optimal EC scheme, will provide a region wherein
the D-R function lies. For simplicity in exposition, we confine ourselves to a two-sensor
setup, but the results apply to any finite N > 2.

Consider the following single-letter characterization of the upper bound on the D-R
function:

D(R) = min
{p(un|xn)}1

n=0,ŝR
Ep(s,{un}1

n=0)[‖s − ŝR‖2], s. to I (x; {un}1
n=0) ≤ R, (7.91)

where the minimization is w.r.t. {p(un|xn)}1
n=0 and ŝR := ŝR(u0, u1). Achievability of D(R)

can be established by readily extending to the vector case the scalar results in (Chen et al.
2004, Theorem 3). Details of this extension can be found in (Schizas et al. 2005). To carry
out the minimization in (7.91), we will develop an alternating scheme whereby u1 is treated
as side information that is available at the decoder when optimizing (7.91) w.r.t. p(u0|x0)

and ŝR(u0, u1). The side information u1 is considered as the output of an optimal rate-
distortion encoder applied to x1 to estimate s, without taking into account x0. Since x1 is
Gaussian, the side information will have the form (cf. subsection 7.7.1) u1 = Q1x1 + ζ 1,
where Q1 ∈ R

k1×M1 and k1 ≤ M1, due to the rate constrained encoding of x1. Recall that
ζ 1 is uncorrelated with x1 and Gaussian; i.e., ζ 1 ∼ N (0, �ζ1ζ1).

Based on ψ := [xT
0 uT

1 ]T , the optimal estimator for s is the MMSE one: ŝ = E[s|ψ] =
�sψ�−1

ψψ ψ = L0x0 + L1u1, where L0, L1 are p × M0 and p × k1 matrices so that �sψ�−1
ψψ

= [L0 L1]. If s̃ is the corresponding MSE, then s = ŝ + s̃, where s̃ is uncorrelated with
ψ due to the orthogonality principle. Noticing also that ŝR(u0, u1) is uncorrelated with s̃
because it is a function of x0 and u1, we have E[‖s − ŝR(u0, u1)‖2] = E[‖ŝ − ŝR(u0, u1)‖2]
+E[‖s̃‖2], or,

E[‖s − ŝR(u0, u1)‖2] = E[‖L0x0 − (ŝR(u0, u1) − L1u1)‖2] + E[‖s̃‖2]. (7.92)

Clearly, it holds that I (x; u0, u1) = R1 + I (x0; u0) − I (u1; u0), where R1 := I (x; u1) is
the rate consumed to form the side information u1 and the rate constraint in (7.91) becomes
I (x; u0, u1) ≤ R ⇔ I (x0; u0) − I (u1; u0) ≤ R − R1 := R0. The new signal of interest in
(7.92) is L0x0; thus, u0 has to be a function of L0x0. Using also the fact that x0 → L0x0 →
u0 constitutes a Markov chain, it is possible to obtain from (7.91) the D-R upper bound
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(Schizas et al. 2005):

D(R0) = E[‖s̃‖2] + min
p(u0|L0x0),ŝR

I (L0x0;u0)−I (u0;u1)≤R0

E[‖L0x0 − s̃R,01(u0, u1)‖2], (7.93)

where s̃R,01(u0, u1) := ŝR(u0, u1) − L1u1. Through (7.93) we can determine an achievable
D-R region, having available rate R0 at the encoder and side information u1 at the decoder.
Since x0 and u1 are jointly Gaussian, the Wyner-Ziv result applies (Wyner and Ziv 1976),
which allows one to consider that u1 is available both at the decoder and the encoder. This,
in turn, permits re-writing (7.93) as (Schizas et al. 2005)

D(R0) = min
p(ŝR,01|s̃0)

I (s̃0;ŝR,01)≤R0

E[‖s̃0 − ŝR,01(u0, u1)‖2] + E[‖s̃‖2], (7.94)

where ŝR,01(u0, u1) = ŝR(u0, u1) − L1u1 − E[L0x0|u1] and s̃0 = L0x0 − E[L0x0|u1].
Notice that (7.94) is the D-R function for reconstructing the MSE s̃0 with rate R0. Since

s̃0 is Gaussian, we can readily apply rwf to the pre-whitened QT
s̃0

s̃0 to determine D(R0) and

the corresponding test channel that achieves D(R0). Through the latter, and considering
the next eigenvalue decomposition � s̃0 s̃0 = Qs̃0 diag(λs̃0,1 · · ·λs̃0,p)QT

s̃0
, it follows that the

first encoder’s output that minimizes (7.91) has the form:

u0 = QT
s̃0,k0

L0x0 + ζ 0 = Q0x0 + ζ 0, (7.95)

where Qs̃0,k0 denotes the first k0 columns of Qs̃0 , k0 is the number of QT
s̃0

s̃0 entries that are
assigned with non-zero rate, and Q0 := QT

s̃0,k0
L0. The k0 × 1 AWGN ζ 0 ∼ N (0, �ζ0ζ0) is

uncorrelated with x0. Additionally, we have [�ζ0ζ0 ]ii = λs̃0,iD
0
i /(λs̃0,i − D0

i ), where D0
i =(∏k0

i=1 λs̃0,i

)1/k0
2−2R0/k0 , for i = 1, . . . , k0, and D0

i = λs̃0,i when i = k0 + 1, . . . , p. This
way, we are able to determine also p(u0|x0). The reconstruction function has the form:

ŝR(u0, u1) = Qs̃0,k0�0u0 + L0�x0u1�
−1
u1u1

u1 + L1u1

−Qs̃0,k0�0QT
s̃0,k0

L0�x0u1�
−1
u1u1

u1, (7.96)

where [�0]ii = λs̃0,iD
0
i /(λs̃0,i − D0

i ), and the MMSE is D(R0) = ∑p

j=1 D0
j + E[‖s̃‖2].

The approach in this subsection can be applied in an alternating fashion from sensor to
sensor in order to determine appropriate p(un|xn), for n = 0, 1, and ŝR(u0, u1) that at best
globally minimize (7.93). The conditional pdfs can be determined by finding the appropriate
covariances �ζnζn . Furthermore, by specifying the optimal Q0 and Q1, characterization of
the encoders’ structure is obtained. In Figure 7.13 (Right), we plot the non-achievable
lower bound which corresponds to one sensor having available the entire x and using
the optimal EC scheme. Moreover, we plot an achievable D-R upper bound determined
by letting the n-th sensor form its local estimate ŝn = E[s|xn], and then apply optimal
rate-distortion encoding to ŝn. If ŝR,0 and ŝR,1 are the reconstructed versions of ŝ0 and
ŝ1, respectively, then the decoder at the FC forms the final estimate ŝR = E[s|ŝR,0, ŝR,1].
We also plot the achievable D-R region determined numerically by Algorithm 2. For each
rate, the smallest distortion is recorded after 500 executions of the algorithm simulated
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Algorithm 2 :

Initialize Q(0)
0 , Q(0)

1 , �
(0)
ζ0ζ0

, �
(0)
ζ1ζ1

by applying optimal D-R encoding to each sensor’s test

channel independently. For a total rate R, generate J random increments {r(m)}Jm=0,
such that 0 ≤ r(m) ≤ R and

∑M
m=0 r(m) = R. Set R0(0) = R1(0) = 0.

for j = 1, J do
Set R(j) = ∑j

l=0 r(l)

for n = 0, 1 do
n = |n − 1| %The complementary index
R0(j) = I (x; u(j)

n )

We use Q(j−1)

n , �
(j−1)

ζnζn
, R(j), R0(j) to determine Q(j)

n , �
(j)

ζnζn
and D(Rn(j))

end for
Update matrices Q(j)

l , �
(j)
ζlζl

that result the smallest distortion D(Rl(j)), with l ∈ [0, 1]

Set Rl(j) = R(j) − I (x; u(j)

l
) and Rl(j) = I (x; u(j)

l
).

end for

Figure 7.13 (Left): D-R region for EC and CE at SNR = 2; (Right): Distortion-rate bounds
for estimating s; here N = 2.

with �ss = Ip, p = 4, and M0 = M1 = 20, at SNR = 2. We observe that the algorithm
provides a tight upper bound of the achievable D-R region, which combined with the non-
achievable lower bound (solid line) effectively reduces the ‘uncertainty region’ where the
D-R function lies.

7.7.3 D-R Upper Bound via Convex Optimization

In this subsection we outline an alternative approach which relies on convex optimization
techniques to obtain numerically an upper bound of the D-R region (Xiao et al. 2005).
The idea is to calculate the Berger-Tung achievable D-R region (Berger 1977) for the vec-
tor Gaussian CEO problem, and subsequently determine the minimum sum rate R� =∑N−1

n=0 Rn such that the estimation MSE satisfies tr(E[(s − ŝR)(s − ŝR)T ]) < D, where
ŝR = E[s|{un}N−1

n=0 ] and D is the desired upper bound on the distortion. The Berger-Tung
achievable region is calculated after having the encoders’ output in form un = xn + ζ n,
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where ζ n ∼ N (0, �ζnζn) are independent of xn, for n = 0, 1, . . . , N − 1. Furthermore, the
sum rate can be expressed as a function of Hn and �ζnζn (Xiao et al. 2005)

R� = 0.5 log

(
det

(
Ip +

N−1∑
n=0

HT
n (IMn + �ζnζn)

−1Hn

)
N−1∏
n=0

det(IMn + �−1
ζnζn

)

)
.

The D-R upper bound is obtained as the optimal solution of the following minimization
problem (& denotes positive semidefiniteness)

min
{�ζnζn }N−1

n=0

R�, s. to �ζnζn & 0, tr(� s̃R s̃R ) ≤ D, (7.97)

where � s̃R s̃R := E[(s − ŝR)(s − ŝR)T ] = (Ip +∑N−1
n=0 HT

n (IMn + �ζnζn)
−1Hn)

−1.
Although, the minimization problem in (7.97) is not convex, (Xiao et al. 2005) has

shown that (7.97) is equivalent to the following convex formulation:

min
�s̃R s̃R

,{�ζnζn }N−1
n=0

−0.5 log det(� s̃R s̃R ) + 0.5
∑N−1

n=0 log det(IMn + �−1
ζnζn

), (7.98)

subject to tr(� s̃R s̃R ) ≤ D, �ζnζn & 0, � s̃R s̃R & 0,

(Ip +∑N−1
n=0 HT

n (IMn + �ζnζn)
−1Hn)

−1 ' � s̃R s̃R ,

which is solved numerically using the interior point method (Boyd and Vandenberghe 2004).

7.8 Conclusion

We considered the problem of distributed estimation using wireless sensor networks and
demonstrated that under limited resources the seemingly unrelated problems of dimension-
ality reduction, compression, quantization and estimation are actually connected due to the
distributed nature of the WSN.

We started with parameter estimation under severe bandwidth constraints that were
adhered to by quantizing each sensor’s observation to one or a few bits. By jointly account-
ing for the unique quantization-estimation tradeoffs present, these bit(s) per sensor were first
used to derive distributed maximum likelihood estimators (MLEs) for scalar mean-location
estimation in the presence of generally non-Gaussian noise when the noise pdf is completely
known; subsequently, when the pdf is known except for a number of unknown parameters;
and finally, when the noise pdf is unknown. In all three cases, the resulting estimators
turned out to exhibit comparable variances that can come surprisingly close to the variance
of the clairvoyant estimator which relies on unquantized observations. This happens when
the SNR capturing both quantization and noise effects assumes low-to-moderate values.
Analogous claims were established for practical generalizations that were pursued in the
multivariate and colored noise cases for distributed estimation of vector deterministic and
random parameters. Therein, MLE and MAP estimators were formed via numerical search
but the log-likelihoods were proved to be concave thus ensuring fast convergence to the
unique global maximum.

We also pursued a related but distinct approach where the bandwidth constraint is
adhered to by reduced-dimensionality observations. We dealt with non-ideal channel links
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that are characterized by multiplicative fading and additive noise. When data across sen-
sors are uncorrelated, we established global MSE optimal schemes in closed-form and
proved that they implement estimation followed by compression per sensor. For correlated
sensor observations, we presented a block coordinate descent algorithm which guaran-
tees convergence at least to a stationary point of the associated mean-square error cost.
The optimal estimators allocate properly the prescribed power following a waterfilling-
like principle. Fundamental MSE limits were finally studied through the D-R function to
estimate a random vector in a single-sensor setup, while optimality of the estimate-first
compress-afterwards approach was established. An alternating algorithm was also outlined
to determine numerically an D-R upper bound in the distributed multi-sensor setup. Using
this upper bound in conjunction with the non-achievable lower bound, determined through
the single-sensor D-R function, yielded a tight region, where the D-R function for distributed
estimation lies.

7.9 Further Reading

The problem of estimation based on quantized observations was studied in early works by
(Gubner 1993), and (Lam and Reibman 1993). The context of distributed estimation using
WSNs was first revisited by (Papadopoulos et al. 2001). The material in Sections 7.1–7.4 is
based on results that appeared in (Ribeiro and Giannakis 2006a) and (Ribeiro and Giannakis
2006b), while the material in Section 7.5 has been reported in (Shah et al. 2005). When
the noise pdf is unknown, the problem of estimation based on severely quantized data has
been also studied by (Luo 2005a), (Luo 2005b), and (Luo and Xiao 2005) where the notion
of universal estimators was introduced. A recent extension of the material covered in these
sections to state estimation of dynamical stochastic processes is the Sign of Innovation
Kalman Filter (SOI-KF) introduced by (Ribeiro et al. 2006).

Distributed estimation via dimensionality reduction has been also considered in (Zhu
et al. 2005), (Gastpar et al. 2006) and (Zhang et al. 2003) for ideal channel links and/or
Gaussian data models. Detailed derivations of what is presented in Section 7.6 can be
found in (Schizas et al. 2007). The estimation schemes in Section 7.6 are intended for
WSNs following a star topology. When it comes to rate constrained distributed estimation
D-R bounds for the Gaussian CEO setup, results are due to (Oohama 1998) and (Chen
et al. 2004) when M = p. The results in Section 7.7, are from (Schizas et al. 2005) and
(Xiao et al. 2005), and correspond to arbitrary M and p. Maximum likelihood multiterminal
estimation under rate constraints is treated in (Han et al. 1995); see also (Zhang et al. 1988).

A different approach to reducing communication costs in distributed estimation is to
allow communication between one-hop neighbors only and let the sensors converge to
a common estimate. In (Xiao and Boyd 2004) estimation is considered tantamount to
convergence to the steady state distribution of a Markov chain. In (Schizas et al. 2006)
estimation is shown to be equivalent to distributed optimization of a convex argument. Yet
another approach in (Barbarossa and Scuttari 2006) is to model the WSN as a network of
coupled oscillators. A different estimation approach using hidden Markov fields is reported
in (Dogandžić 2006).
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8

Distributed Learning in Wireless
Sensor Networks

Joel B. Predd, Sanjeev R. Kulkarni, and H. Vincent Poor

8.1 Introduction

Wireless sensor networks have attracted considerable attention in recent years (Akyildiz
et al. 2002). Research in this area has focused on two separate aspects of such networks:
networking issues, such as capacity, delay, and routing strategies; and applications issues.
This chapter is concerned with the second of these aspects of wireless sensor networks,
and in particular with the problem of distributed inference. Wireless sensor networks are
a fortiori designed for the purpose of making inferences about the environments that they
are sensing, and they are typically characterized by limited communication capabilities due
to tight energy and bandwidth limitations. Thus, distributed inference1 is a major issue in
the study of such networks.

Distributed inference has a rich history within the information theory and signal pro-
cessing communities, especially in the framework of parametric models. Recall that in
parametric settings, the statistics of the phenomena under observation are assumed to be
known to the system designer. Under such assumptions, research has typically focused on
determining how the capacity of the sensor-to-fusion center channel fundamentally limits
the quality of estimates (e.g., rate-distortion tradeoffs: Berger et al. 1996; Gastpar et al.

1The terms distributed inference and decentralized inference are used somewhat interchangeably in the liter-
ature, and often qualified as decentralized (distributed) detection or estimation depending on the context. In the
present article, we also use the terms interchangeably, and apply an author’s own convention when discussing
her or his work.

Wireless Sensor Networks: Signal Processing and Communications Perspectives A. Swami, Q. Zhao, Y.-W. Hong and L. Tong
Ò 2007 John Wiley & Sons, Ltd
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2006; Han and Amari 1998; Viswanathan and Berger 1997), on determining delay-sensitive
optimal (under various criteria) sensor decision rules and fusion strategies under unreliable
bandwidth constrained channels (e.g., Chen et al. 2006; Varshney 1996; Vishwanathan
and Varshney 1997), on characterizing the performance of large networks relative to their
centralized communication-unconstrained counterparts (e.g., Chamberland and Veeravalli
2004; Negi et al. 2007), or on developing message-passing algorithms through which glob-
ally optimal estimates are computed with only local inter-sensor communications (e.g.,
Delouille et al. 2004). As this diverse yet non-exhaustive list of issues suggests, the lit-
erature on decentralized inference is massive and growing. See, for example, Blatt and
Hero (2004); Blum et al. (1997); D’Costa and Sayeed (2003); D’Costa et al. (2004); Gast-
par (2007); Kotecha et al. (2005); Li et al. (2002); Nowak (2003); Ribeiro and Giannakis
(2006a); Ribeiro et al. (2007); Servetto (2002); Tsitsiklis (1993); Veeravalli and Chamber-
land (2007) and references thereto and therein for entry points.

From a theoretical perspective, parametric models enable a rigorous examination of
many fundamental questions for inference under communication constraints. However,
practically speaking, such strong assumptions should be motivated by data or prior appli-
cation-specific domain knowledge. If, instead, data is sparse and prior knowledge is limited,
robust nonparametric methods for decentralized inference are generally preferred.

The anticipated applications for wireless sensor networks range broadly from home-
land security and surveillance to habitat and environmental monitoring. Indeed, advances
in microelectronics and wireless communications have made wireless sensor networks the
predicted panacea for attacking a host of large-scale decision and information-processing
tasks. As the demand for these devices increases, one cannot expect that the necessary data
or domain knowledge will always be available to support a parametric approach. Conse-
quently, applications of wireless sensor networks provide an especially strong motivation
for the study of nonparametric methods for decentralized inference.

Recognizing this demand, a variety of researchers have taken steps to relax the need to
make strong statistical assumptions about phenomena under observation, moving toward a
nonparametric approach to distributed inference. For example, requiring only weak assump-
tions about the underlying distribution, Nasipuri and Tantaratana (1997) and Vishwanathan
and Ansari (1989) consider schemes based on the Wilcoxon signed-rank test statistic, Al-
Ibrahim and Varshney (1989) and Han et al. (1990) study the sign detector, and Barkat and
Varshney (1989) and Hussaini et al. (1995) address constant-false-alarm-rate detection, all
in a distributed environment. Schemes for universal decentralized detection and estimation
are surveyed in Xiao et al. (2006), and are studied in detail in Luo (2005a,b); Ribeiro and
Giannakis (2006b); Xiao and Luo (2005a,b). From a practical perspective, these approaches
are attractive not only because they permit the design of robust networks with provable
performance guarantees, but also because in principle, they support the design of ‘isotropic’
sensors, i.e., sensors that may be deployed for multiple applications without reprogramming.

In this chapter, our focus is on an alternative nonparametric approach, the learning-
theoretic approach (e.g., Vapnik 1991). Frequently associated with pattern recognition (e.g.,
Devroye et al. 1996; Duda et al. 2001), nonparametric regression (e.g., Gyorfi et al. 2002),
and neural networks (e.g., Anthony and Bartlett 1999), learning-theoretic methods are aimed
precisely at decision problems in which prior knowledge is limited and information about
the underlying distributions is available via a limited number of observations, i.e. via a
training data set. Researchers in computer science, statistics, electrical engineering, and



8.1. INTRODUCTION 187

other communities have been united in the field of machine learning, in which computa-
tionally tractable and statistically sound methods for nonparametric inference have been
developed. Powerful tools such as boosting (e.g., Freund and Schapire 1997) and kernel
methods (e.g., Schölkopf and Smola 2002) have been successfully employed in real-world
applications ranging from handwritten digit recognition to functional genomics, and are
well understood statistically and computationally. A general research question arises: can
the power of these tools be tapped for inference in wireless sensor networks?

As we discuss below, the classical limits of and algorithms for nonparametric learning
are not always applicable in wireless sensor networks, in part because the classical models
from which they are derived have abstracted away the communication involved in data-
acquisition. This observation provides inspiration for distributed learning in wireless sensor
networks, and leads to a variety of fundamental questions. How is distributed learning in
sensor networks different from centralized learning? In particular, what fundamental limits
on learning are imposed by constraints on energy and bandwidth? In light of such limits,
can existing learning algorithms be adapted? These questions are representative of a larger
thrust within the sensor network community which invites engineers to consider signal
processing and communications jointly.

Though the impetus for nonparametric distributed learning has been recognized in a
variety of fields, the literature immediately relevant to sensor networks is small and is not
united by a single model or paradigm. Indeed, distributed learning is a relatively young
area, as compared to (parametric) decentralized detection and estimation, wireless sensor
networks, and machine learning. Thus, an exhaustive literature review would necessarily
focus on numerous disparate papers rather than aggregate results organized by model. In
the interest of space, this chapter divides the literature on distributed learning according to
two general research themes: distributed learning in wireless sensor networks with a fusion
center, where the focus is on how learning is effected when communication constraints
limit access to training data; and distributed learning in wireless sensor networks with
in-network processing, where the focus is on how inter-sensor communications and local
processing may be exploited to enable communication-efficient collaborative learning. We
discuss these themes within the context of several papers from the field. Though the result
is a survey unquestionably biased toward the authors’ own interests, our hope is to provide
the interested reader with an appreciation of a set of fundamental issues within distributed
signal processing and an entrée to a growing body of literature.

The remainder of this chapter is organized as follows. In Section 8.2 we review the
classical supervised learning model, and discuss kernel methods, a popular and well-studied
class of learning algorithms. In Section 8.3, we discuss distributed learning, contrasting it
with its classical counterpart and highlighting its relevance to and the challenges posed
by wireless sensor networks. In Section 8.4, we examine research aimed at distributed
learning in wireless sensor networks with a fusion center. In Section 8.5, we study dis-
tributed learning in wireless sensor networks with in-network processing; in particular,
we examine several message-passing algorithms for collaboratively training least-squares
regression estimators. Finally, we end with conclusions in Section 8.6. Given that nonpara-
metric methods often permit parametric (e.g., Bayesian) interpretations, various connections
exist between the parametric analyses previously cited and those cast formally within the
learning framework. As appropriate, we highlight such connections in the discussion to
follow.
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8.2 Classical Learning

In this section, we summarize the supervised learning model which is often studied in
learning theory, nonparametric statistics and statistical pattern recognition. For a thorough
introduction to classical learning models and algorithms, we refer the reader to the review
paper (Kulkarni et al. 1998) and references therein, and to standard books, e.g., (Anthony
and Bartlett 1999; Devroye et al. 1996; Duda et al. 2001; Gyorfi et al. 2002; Hastie et al.
2001; Mitchell 1997).

8.2.1 The Supervised Learning Model

Let X and Y be X -valued and Y-valued random variables, respectively. X is known as the
feature, input, or observation space; Y is known as the label, output, target, or parameter
space. Attention in this chapter is restricted to detection and estimation, i.e., we consider
two cases corresponding to binary classification (Y = {0, 1}) and regression (Y = (). To
ease exposition, we assume that X ⊆ (d .

Given a loss function l : Y × Y → (, we seek a decision rule g : X → Y that mini-
mizes expected loss,

E{l(g(X), Y )}. (8.1)

In the binary classification setting, the criterion of interest is the probability of misclas-
sification, which corresponds to the zero-one loss function l(y, y ′) = 1{y �=y′}(y, y ′). In the
context of estimation, the squared error l(y, y ′) = |y − y ′|2 is the metric of choice. In para-
metric statistics, one assumes prior knowledge of a joint probability distribution PXY that
describes the stochastic relationship between inputs and outputs. Under this assumption, the
structure of the loss minimizing decision rule is well understood. The regression function

g(x) = E{Y |X = x}

achieves the minimal expected squared error, and the maximum a posteriori (MAP) deci-
sion rule

g(x) =
{

1 if P{Y = 1 |X = x} > P{Y = 0 |X = x}
0, otherwise

is Bayes optimal for binary classification (Devroye et al. 1996) under the zero-one loss. In
the sequel, we use

L� = min
g

E{l(g(X), Y )}

to denote the loss achieved by the loss-minimizing decision rule.
In the supervised learning model, prior knowledge of the joint distribution PXY is not

available and thus, computing the MAP decision rule or the regression function is not
possible. Instead, one is provided a collection of training data

Sn = {(xi, yi)}ni=1 ⊂ X × Y,

i.e., a set of exemplar input-output pairs, to use in designing a decision rule. In order to
characterize the statistical limits of learning or to analyze specific learning algorithms, Sn is
often assumed to be generated from some stochastic process. Here, we make the standard
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assumption that Sn = {(Xi, Y i)}ni=1 is independently and identically distributed (i.i.d.) with
(Xi, Yi) ∼ PXY .

In this chapter, a learning rule (or learning algorithm) is taken to be a sequence {gn}∞n=1
of data-dependent decision rules gn : X × (X × Y)n → Y , thought to be designed without
making additional, unverifiable assumptions on PXY . The process of constructing the deci-
sion rule gn(·, Sn) is called training, and any procedure for doing so is called a training
algorithm. When a learning rule {gn}∞n=1 is implicit, we use

Ln = Ln(Sn) = E{l(gn(X, Sn), Y )| Sn}.
to denote its expected loss conditioned on the (random) training data set Sn.

8.2.2 Kernel Methods and the Principle of Empirical Risk
Minimization

Kernel methods constitute a popular class of learning rules that have been developed in
the context of the supervised learning model. The kernel approach to learning can be
summarized as follows. First, design a kernel, i.e., a positive semi-definite function K :
X × X → (, as a similarity measure for inputs. Though kernel design is an active area of
research, it is generally an art, typically guided by application-specific domain knowledge;
Table 8.1 lists several commonly used kernels for X = (d . Then, construct a real-valued
decision rule gn as follows:

gn(x) = gn(x, Sn) =
{ ∑n

i=i K(x,xi )yi∑n
i=i K(x,xi )

if
∑n

i=i K(x, xi) > 0

0, otherwise
(8.2)

In words, gn(x) associates with each input x ∈ X a weighted average of the training data
outputs, with the weights determined by how ‘similar’ the corresponding inputs are to x.
With the naive kernel, gn(x) is analogous to the Parzen-window rule for density estimation.

The wisdom behind the kernel approach is demonstrated by Stone’s Theorem (Stone
1977), which establishes that kernel learning rules can be made universally consistent.
Intuitively, a learning rule is universally consistent if in the limit of large amounts of data,
its loss is expected to be as small as if one had known PXY in advance. This notion is
formalized with the following definition:

Definition 8.2.1 A learning rule {gn}∞n=1 is universally consistent if and only if E{Ln} →
L� for all distributions PXY with E{Y 2} < ∞.

Table 8.1 Common kernels.

K(x, x ′) Name

1{‖x−x′‖2≤rn} Naive kernel
xT x ′ Linear kernel
(1 + xT x ′)d Polynomial kernel

exp−‖x−x′‖2
2 Gaussian kernel

(1 − ‖x − x ′‖2
2)+ Epanechnikov kernel

1/(1 + ‖x − x ′‖d+1
2 ) Cauchy kernel
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Stated in full generality, Stone’s Theorem establishes that a large class of ‘weighted
average’ learning rules can be made universally consistent, including kernel rules with a
Gaussian kernel, nearest neighbor rules, and histogram estimators. Described in detail in
Devroye et al. (1996) and in Gyorfi et al. (2002), the following theorem prescribes sufficient
conditions for the naive kernel rule to be universally consistent in a least-squares setting.
Interestingly, under identical assumptions, the binary decision rule induced by thresholding
(8.2) at one-half is universally consistent for binary classification under the zero-one loss
(see Devroye et al. 1996).

Theorem 8.2.2 (Stone) Suppose that {gn}∞n=1 is as in (8.2) with the naive kernel (Table 8.1).
If rn → 0 and nrd

n → ∞, then {gn}∞n=1 is universally consistent under the squared-error
criterion.

Though this seminal result is promising, there is a catch. It is well known that without
additional assumptions on PXY , the convergence rate of E{Ln} may be arbitrarily slow.
Moreover, even with appropriate assumptions, the rate of convergence is typically expo-
nentially slow in d, the dimensionality of the input space. These caveats have inspired
the development of practical learning rules that recognize the finite-data reality and the
so-called curse of dimensionality.

Many popular learning rules are inspired by the principle of empirical risk minimization
(Vapnik 1991), which requires the learning rule to minimize a data-dependent approximation
of the expected loss (8.1). For example, consider the learning rule defined as follows:

gλ
n = arg min

f∈F

[1

n

n∑
i=1

l(f (xi), yi) + λ‖f ‖2
F
]
. (8.3)

The first term in the objective function (8.3) is the empirical loss2 of a decision rule
f : X → (, and serves as a measurement of how well f ‘fits the data’; the second term
acts as a complexity control and regularizes the optimization. λ ∈ ( is a parameter that
governs the trade-off between these two terms. The optimization variable (i.e., function) is
f , which is constrained to be in a Hilbert space F with norm ‖ · ‖F.

Intuitively, when n is large and λ is small, the objective function will closely approx-
imate the expected loss of f over F . The hope is that the decision rule gλ

n will then
approximately minimize the expected loss. The principle of empirical risk minimization is
well understood, but unfortunately a more thorough introduction is beyond the scope of
this chapter. We refer the reader to standard references for additional information; see, for
example, Vapnik (1991).

Reproducing kernel methods generalize the simple kernel rule (8.2), while employing
the principle of empirical risk minimization. In particular, reproducing kernel methods
follow (8.3), taking F = HK to be the reproducing kernel Hilbert space (RKHS) induced
by a kernel K(·, ·). More precisely, for any positive definite function K(·, ·), we can

2In practice, for various statistical and computational reasons, the empirical loss is often measured using a
convex loss function which may bound or otherwise approximate the loss criterion of interest. See Schölkopf and
Smola (2002) for discussion and examples.
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construct a unique collection of functions HK such that

Kt = K(·, t) ∈ HK ∀t ∈ X
n∑

i=1

αiKti ∈ HK ∀{αi}ni=1 ⊂ (, n < ∞. (8.4)

If we equip HK with an inner-product defined by < Ks, Kt >= K(s, t), extend HK using
linearity to all functions of the form (8.4), and include the point-wise limits, then HK is
called an RKHS. Note that

< Kx, f >= f (x),

for all x ∈ X and all f ∈ HK ; this identity is the reproducing property from which the
name is derived. Henceforth, we use ‖ · ‖HK

to denote the norm associated with HK .
Returning to the discussion on learning with kernel methods, note that the inner-product

structure of HK implies the following ‘Representer Theorem’, proved in a least-squares
context in Kimeldorf and Wahba (1971); a generalization appears in Schölkopf and Smola
(2002).

Theorem 8.2.3 (Representer Theorem) The minimizer gλ
n ∈ HK of (8.3) admits a repre-

sentation of the form

gλ
n(·) =

n∑
i=1

cλ
n,iK(·, xi), (8.5)

for some cλ
n ∈ (n.

Theorem 8.2.3 is significant because it highlights that while the optimization in (8.3)
is defined over a potentially infinite dimensional Hilbert space, the minimizer must lie
in a finite dimensional subspace. It also highlights a sense in which reproducing kernel
methods generalize their more naive counterpart, since (8.2) can be expressed as (8.5) for
a particular choice of cλ

n. To emphasize the significance of the Representer Theorem, note
that in least-squares estimation it implies that cλ

n is the solution to a system of n linear
equations. In particular, it satisfies

cλ
n = (K + λI)−1y, (8.6)

where K = (kij ) is the kernel matrix (kij = K(xi, xj )).
The statistical behavior of kernel methods is well understood under various assump-

tions on the stochastic process that generates the examples in Sn (see, e.g., Gyorfi et al.
2002; Schölkopf and Smola 2002). Moreover, this highly successful technique has been
verified empirically in applications ranging from bioinformatics to hand-written digit recog-
nition.

8.2.3 Other Learning Algorithms

As the reader may well be aware, the scope of supervised learning rules extends far beyond
kernel methods, and includes, for example, neural networks (e.g., Anthony and Bartlett
1999), nearest-neighbor rules (e.g., Gyorfi et al. 2002), decision-trees (e.g., Quinlan 1992),
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Bayesian and Markov networks (e.g., Jordan 1999; Pearl 1988), and boosting (e.g., Freund
and Schapire 1997). Many of these algorithms are well understood computationally and
statistically; together they comprise an indispensable toolbox for learning. At this point, we
leave classical supervised learning in general and kernel methods in particular, referring
the interested reader to previously cited references for additional information.

8.3 Distributed Learning in Wireless Sensor Networks

To illustrate how learning is relevant to wireless sensor networks and to motivate the
problem of distributed learning, let us consider the following toy example.

Suppose that the feature space X models a set of observables measured by sensors in
a wireless network. For example, the components of an element x ∈ X = (3 may model
coordinates in a (planar) environment and time. Y = ( may represent the space of tem-
perature measurements. A decision maker may wish to know the temperature at some
point in space-time; to reflect that these coordinates and the corresponding temperature are
unknown, let us model them with the random variable (X, Y ). A joint distribution PXY

may model the spatio-temporal correlation structure of a temperature field. If the field’s
structure is well understood, i.e., if PXY can be assumed known a priori, then an estimate
may be designed within the parametric framework (e.g., Poor 1994). However, if such prior
information is unavailable, an alternative approach is necessary.

Suppose that sensors are randomly deployed about the environment, and collectively
acquire a set Sn ⊂ X × Y of temperature measurements at various points in space-time.3

The set Sn is akin to the training data described in Section 8.2, and thus supervised learn-
ing algorithms seem naturally applicable to this field-estimation problem. However, the
supervised learning model has abstracted away the process of data acquisition, and gener-
ally does not incorporate communication constraints that may limit a learning algorithm’s
access to data. Indeed, the theory and methods discussed in Section 8.2 depend critically on
the assumption that the training data is entirely available to a single processor. However,
in wireless sensor networks, the energy and bandwidth required to collect the sensors’ raw
measurements may be prohibitively large. Thus, training centralized learning rules may
limit the sensors’ battery life, may waste bandwidth, and may ultimately preclude one from
realizing the potential of wireless sensor networks.

Sensors in WSNs are typically equipped with on-board processing capabilities, and this
fact has important implications for distributed inference. In particular, with the ability to
locally process information, the sensors are more than mere data-collectors, as the name
‘sensor’ may suggest. Rather, sensors are full-fledged information processors, and therefore
the network is better viewed as a distributed information processing system. However,
to suggest that a sensor network is a collection of processors is an oversimplification.
Indeed, inter-sensor communications are severely limited by tight constraints on energy
and bandwidth, and this fundamentally distinguishes distributed learning from being an
application of parallel computing.

One might employ multi-terminal data compression, in hopes of exploiting correla-
tion amongst sensors’ measurements to send the training set to a central processing site;

3A host of localization algorithms have been developed to enable sensors to measure their location; see, for
example, Gezici et al. (2005); Nguyen et al. (2005a); Patwari et al. (2005).
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ostensibly, such an approach would be a significant improvement over sending ‘raw’ data.
However, the goal of such an approach would be to reconstruct the complete training set
Sn at a central location, and subsequently train a classical supervised learning algorithm.
In short, the goal is the same as before – to learn a general decision rule – and thus, one
is inclined to skip the intermediate step of sending data, and proceed directly to learn-
ing. Indeed, the sensors’ ability to compute allows us to push intelligence to the outer
extremes of the network, and may ultimately provide an increase in communication effi-
ciency. Therein lies the motivation for distributed learning in wireless sensor networks,
and the inspiration for many fundamental questions.

In particular, how does communication fundamentally influence learning? Can we
design learning algorithms to respect constraints on energy and bandwidth? In the next
section, we introduce a model for distributed learning that will be the focus of analysis in
the ensuing chapters.

Before proceeding, note that the simplicity of the preceding example should not temper
the promise for wireless sensor networks, nor should it mask the fundamental importance
of distributed learning. In particular, note that X may model more than position or time,
and may represent a space of multi-modal sensor measurements that commonly occur in
wireless sensor network applications. Y may model any number of quantities of interest, for
example, the strength of a signal emitted from a target, a force measured by a strain gauge,
or an intensity level assessed by an acoustic sensor; Y may even be multidimensional. In
general, each sensor or the fusion center aims to design a decision rule g : X → Y using
the data observed by the sensor network.

8.3.1 A General Model for Distributed Learning

As a starting point to studying the aforementioned questions, consider a model for dis-
tributed learning in wireless sensor networks. Suppose that in a network of m sensors,
sensor j has acquired a unique set of measurements, i.e., training data, S

j
n ⊆ Sn = ∪m

j=1S
j
n .

In the example above, S
j
n may represent a stationary sensor’s measurements of temperature

over the course of a day, or a mobile sensor’s readings at various points in space-time.
Suppose further that the sensors form a wireless network, whose topology is specified by
a graph. For example, consider the models depicted pictorially in Figures 8.1 and 8.2.

Each node in the graph represents a sensor and its locally observed data; an edge in the
graph posits the existence of a wireless link between sensors. A fusion center can be mod-
eled as an additional node in the graph, perhaps with larger capacity links between itself and
the sensors, to reflect its larger energy supply and computing power. A priori, this model
makes no assumptions on the topology of the network (e.g., the graph is not necessarily con-
nected), though the promise of distributed learning may in fact depend on such properties.

Much of the existing research on distributed learning can be categorized according to
its focus on one of two classes of networks. Depicted in Figure 8.1, the parallel network
supposes a collection of sensors that communicate directly with a fusion center over a
multiple-access channel; or viewed differently, that a single agent has a bandwidth-limited
channel over which it may access all the data. In this setting, the question is: how is learning
fundamentally affected when bandwidth constraints limit our access to the data? This archi-
tecture is relevant to wireless sensor networks whose primary purpose is data collection.
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Figure 8.1 A parallel network with a fusion center.

A second class of networks retain an ad-hoc structure like the network in Figure 8.2. A
typical assumption is that the topology of these networks is dynamic and perhaps unknown
prior to deployment; a fusion center may exist, but the sensors are largely autonomous and
may make decisions independently of the single, coordinating authority (e.g., to track a
moving object). Research on these types of structures typically focuses on how localized
processing and inter-sensor communication can be exploited to allow communication-
efficient learning by enabling collaboration.

Much of the work in distributed learning differs in the way that the capacity of the
links is modeled. Given that learning is already a complex problem, simple application-
layer abstractions are typically preferred over detailed physical layer models. The links are
often assumed to support the exchange of ‘simple’ real-valued messages, where simplicity
is assessed relative to the application (e.g., sensors share summary statistics rather than
entire data sets). Lacking a formal communication model, quantifying the efficiency of
various methods from an energy and bandwidth perspective is not always straightforward.

Transcending many analyses and implementations of wireless networks is the impor-
tance of local communication. Loosely speaking, local communications are those that occur
between neighboring sensors in a communication network. In wireless networks, topology
of the network is in correspondence with the topology of the environment, which is to
say that a sensor’s network neighborhood is roughly equal to its physical neighborhood.
The energy required for two sensors to communicate decreases as the distance between
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Figure 8.2 An ad-hoc network with in-network processing. Ò 2006 IEEE. Reprinted with
permission, from Distributed Learning in Wireless Sensor Networks by Joel B. Predd,
Sanjeev R. Kulkani and H. Vincent Poor, IEEE Signal Processing Magazine, Vol 23(4),
56–69 pp. July 2006.

them decreases, often according to an inverse square law; by the same law, multiple-access
interference decreases as the distance between pairs of communicating nodes increases.
Thus, by minimizing energy expenditure and by enabling spectral reuse, local communica-
tions are often an efficient mode of information transport in WSNs.4

The foregoing observation is the starting point for many studies on distributed learning
(and indeed, on distributed inference more generally). Rather than formalize a detailed phys-
ical layer communication model, which may or may not be relevant to any specific WSN
application, studies of distributed learning often posit a model for local communication and
then study how sensor-to-sensor (sensor-to-fusion center) interactions can improve learning
by enabling collaboration. Ultimately, assumptions about the efficiency of local commu-
nications must be justified, perhaps by formalizing a physical-layer communication model
or perhaps through scaling law analyses. However, application-layer abstractions of local
communication are nonetheless a reasonable starting point to investigate the fundamental
limits of distributed learning. We will revisit these ideas in the discussion to follow, after
instantiating the preceding models with more specific assumptions about sensor-to-sensor
(sensor-to-fusion center) communication.

In the next few sections, we review recent work aimed at understanding these issues
in the context of wireless sensor networks. Though statistical and machine learning are
rife with results relevant to distributed learning in general, to our knowledge surprisingly
little research has addressed learning in wireless sensor networks in particular. Thus, before

4These tradeoffs are studied more formally, for example, in the literature on scaling laws in WSNs; see, e.g.,
Gupta and Kumar (2000); Kulkarni and Viswanath (2004) and references therein and thereto.
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proceeding, let us highlight several areas of machine learning research that are relevant to
distributed learning, if not to wireless sensor networks, and that may have a bearing on
future studies in distributed learning in wireless sensor networks.

8.3.2 Related Work

Within the context of wireless sensor networks, Nguyen et al. (2005b) develop a nonpara-
metric kernel-based methodology for decentralized detection. As in centralized learning,
a training set is assumed available offline to a single processor. The data is used to train
a learning rule that solves an optimization problem similar to (8.3), with the additional
constraint that the resulting decision rule lies within a restricted class which is deploy-
able across a sensor network; the powerful notion of a marginal kernel is exploited in
the process. This setting is fundamentally different from the present context in that the
data is centralized. Thus, one might distinguish the former topic of centralized learning
for decentralized inference from the present topic of distributed learning for decentralized
inference.

Ensemble methods have attracted considerable attention within machine learning. Ex-
amples of these techniques include bagging, boosting, mixtures of experts, and others (see,
e.g., Breiman 1996; Freund and Schapire 1997; Freund et al. 1997; Jacobs et al. 1991;
Kittler et al. 1998). Intuitively, these methods allocate portions of the training database
to different learning algorithms, which are independently trained. The predictions of the
individual learning rules are subsequently aggregated, sometimes by employing a different
training algorithm and sometimes using feedback from the training phase of the individ-
ual learning algorithms. One might cast such methods within a framework of distributed
learning in a parallel network, but ensemble methods are generally designed within the
classical model for supervised learning, and fundamentally assume that the training set Sn

is available to a single coordinating processor. In general, the focus of ensemble learning
is on the statistical and algorithmic advantages of learning with an ensemble and not on
the nature of learning under communication constraints. Nevertheless, many fundamental
insights into learning have arisen from ensemble methods; future research in distributed
learning stands to benefit.

Related to ensemble methods, and inspired by the availability of increasingly large data
sets, an active area of machine learning research focuses on ‘scaling up’ existing learning
rules to handle massive training databases; see, for example, Bordes et al. (2005); Chawla
et al. (2004); Graf et al. (2005); Provost and Hennessy (1996) and references thereto and
therein. One approach is to decompose the training set into smaller ‘chunks’, and subse-
quently parallelize the learning process by assigning distinct processors/agents to each of
the chunks. In this setting, sometimes termed parallel learning, the communication con-
straints arise as parameters to be tweaked, rather than from resources to be conserved;
this difference in perspective often limits the applicability of the underlying communi-
cation model to applications like sensor networks. However, in principle, algorithms for
parallelizing learning may be useful for distributed learning with a fusion center and vice
versa.

Population learning is an early model for distributed learning (Kearns and Seung 1995;
Nakamura et al. 1998; Yamanishi 1997). Once again, a parallel network is considered, but
in contrast to ensemble methods and parallel learning in which the predictions of individual
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learning rules are combined, it is assumed that the ‘sensors’ transmit a complete description
of their locally trained decision rules to the fusion center. The fusion center’s task is to
observe the response of the network to infer a more accurate rule. The original model
(Kearns and Seung 1995) was parametric (i.e., ‘distribution specific’ learning), and was
constructed in the spirit of the PAC ‘probably approximately correct’ framework (Valiant
1984). Generalizations considered in Nakamura et al. (1998) relaxed such assumptions,
but the results ultimately depend on strong assumptions about a class of hypotheses that
generate the data. The utility of these results to wireless sensor networks may be limited
by these strong assumptions, or by the demands of communicating a complete description
of the rule. Nevertheless, population learning may provide insights for distributed learning
with a fusion center.

The online learning framework also appears relevant to distributed learning in wireless
sensor networks with a fusion center (see, e.g., Cesa-Bianchi et al. 1997; Freund et al.
1997; Littlestone and Warmuth 1994). In that setting, a panel of experts (i.e., a network of
sensors) provide predictions (one can imagine that, as in ensemble and parallel learning,
predictions arose from independently trained estimators, but such assumptions are unnec-
essary). In contrast to ensemble learning, online learning occurs in repeated trials. At each
trial, a centralized agent makes its own prediction by combining expert predictions through
a weighted average; after learning the ‘truth’ (i.e., Y ), the agent suffers a loss (e.g., squared
error), and attempts to ‘track’ the best expert by updating the weights of its weighted aver-
age by taking into account the past performance of each expert. Under minimal assumptions
on the evolution of these trials, bounds are derived that compare the trial-averaged per-
formance of the central agent with that of the best (weighted combination of) expert(s).
Communication constraints enter online learning implicitly, since the information that the
individual experts use is not needed by the centralized agent. This framework may be
relevant to aggregation problems that arise in wireless sensor networks, however, to our
knowledge such applications have not been made.

At a higher level, the field of data mining has explored distributed learning in the context
of distributed databases. Here, communication constraints arise when various agents have
access to distinct training databases but are unable to share their data due to security, pri-
vacy, or legal concerns (the fraud detection application is illustrative of a relevant scenario
in which corporations have access to large databases of customer transactions and wish
to collaborate to identify fraudulent interactions). Though the communication constraints
arise for very different reasons, the problem bears resemblance to the ad-hoc structure of
distributed learning in sensor networks. In the data mining context, a distributed boosting
algorithm is studied in Lazarevic and Obradovic (2001); a similar algorithm is analyzed in
the context in secure multi-party computation in Gambs et al. (2005).

8.4 Distributed Learning in WSNs with a Fusion Center

In this section, we discuss distributed learning in wireless sensor networks with a fusion
center, which focuses on the parallel network depicted in Figure 8.1. Recall that in this
setting, each sensor in the network acquires a set of data. In the running example, the data
may constitute the sensors’ temperature measurements at discrete points in space-time. The
fusion center would like to use the locally observed data to construct a global estimate of
the continuously varying temperature field.
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8.4.1 A Clustered Approach

The naive approach in this setting would require the sensors to send all of their data to
the fusion center. As has been discussed, this approach would be costly in terms of energy
and bandwidth. A more principled methodology might designate a small subset of nodes to
send data. If the number of nodes is small, and the data (or the nodes) are wisely chosen,
then such a strategy may be effective in optimizing learning performance while keeping
communication costs to a minimum.

For example, one may partition the sensors into subgroups, and assign each a ‘cluster
head’.5 Cluster heads may retrieve the data from sensors within its group; since the sensors
within a cluster are nearby, this exchange may be inexpensive since it involves only local
communications. Then, the cluster head may filter this data and send the fusion center a
summary, which might include a locally learned rule or data that is particularly informa-
tive (e.g., ‘support vectors’). Clustered approaches have been considered frequently within
parametric frameworks for detection and estimation (e.g., D’Costa et al. 2004).

Nguyen et al. (2005a) considered a clustered approach to address sensor network local-
ization. There, the feature space X = (2 models points in a planar terrain, and the output
space Y = {0, 1} models whether or not a point belonged to a (specifically designed) convex
region within the terrain. Training data is acquired from a subset of sensors (base stations)
whose positions were estimated using various physical measurements. The fusion center
uses reproducing kernel methods for learning, with a kernel designed using signal-strength
measurements. The output is a rule for determining whether any sensor (i.e., non-base sta-
tions) lay in the convex region using only a vector of signal-strength measurements. We
refer the reader to the paper for additional details, and reports on several real-world exper-
iments. However, we highlight this as an example of the clustered approach to distributed
learning with a fusion center, a methodology which is broadly applicable.

8.4.2 Statistical Limits of Distributed Learning

Stone’s Theorem is a seminal result in statistical pattern recognition which established
the existence of universally consistent learning rules (see Theorem 8.2.2). Many efforts
have extended this result to address the consistency of Stone-type learning rules under
various sampling processes; for example, Devroye et al. (1996), Gyorfi et al. (2002) and
references therein, Cover (1968); Greblicki and Pawlak (1987); Krzyżak (1986); Kulkarni
and Posner (1995); Kulkarni et al. (2002); Morvai et al. (1999); Nobel (1999); Nobel and
Adams (2001); Nobel et al. (1998); Roussas (1967); Stone (1977); Yakowitz (1989, 1993).
These results extend Theorem 8.2.2 by considering various dependency structures within
the training data (e.g., Markovian data). However, all of these works are in the centralized
setting and assume that the training database is available to a single processor.

Predd et al. (2006a) attempted to characterize the limits of distributed learning with a
fusion center, by overlaying several simple communication models onto the classical model
for supervised learning. In particular, extensions of Stone’s Theorem were considered in
light of the following question: with sensors that have each acquired a small set of training
data and that have some limited ability to communicate with the fusion center, can enough
information be exchanged to enable universally consistent learning?

5Distributed clustering algorithms have been developed with such applications in mind; see Bandyopadhyay
and Coyle (2003), for example.
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Figure 8.3 The model studied in Predd et al. (2004, 2006a). Ò 2006 IEEE. Reprinted
with permission, from Distributed Learning in Wireless Sensor Networks by Joel B. Predd,
Sanjeev R. Kulkani and H. Vincent Poor, IEEE Signal Processing Magazine, Vol 23(4),
56–69 pp. July 2006.

To address this question, Predd et al. (2006a) supposes that each sensor acquires just
one training example, i.e., S

j
n = {(Xj , Yj )}. Communication was modeled as follows: when

the fusion center observes a new observation X ∼ PX, it broadcasts the observation to the
network in a request for information. At this time, bandwidth constraints limit each sensor
to responding with at most one bit. That is, each sensor chooses whether or not to respond
to the fusion center’s request for information; if it chooses to respond, a sensor sends
either a 1 or a 0 based on its local decision algorithm. Upon observing the response of the
network, the fusion center combines the information to create an estimate of Y .

A refined depiction of the architecture of this model is depicted in Figure 8.3. To
emphasize its structure, note that the fusion center has a broadcast channel back to the
sensor (for requesting information on X), and each sensor has a point-to-point wireless
uplink channel over which they can send one bit. Since each sensor may abstain from voting
altogether, the sensors’ uplink channels have a slightly larger capacity than is suggested
by this mere one bit that we have allowed them to physically transmit to the fusion center.
Indeed, sensor-to-fusion center communication occurs even when a sensor abstains from
voting.

Taken together, the sensors’ local decision algorithms and the fusion center’s combining
rule form a distributed data-dependent decision rule. Can this decision rule be designed to
simultaneously satisfy the communication constraints of the model and enable universally
consistent learning? The following theorem settles the question in this model for distributed
learning with abstention.
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Theorem 8.4.1 (Predd et al. (2006a)) [Classification and Estimation with Abstention] Sup-
pose that the sensors’ data Sn = ∪m

j=1S
j
n are i.i.d. with (Xi, Yi) ∼ PXY∀i ∈ {1, . . . , m}, and

that each sensor has knowledge of m, the size of the sensor network. Then, in binary classi-
fication under the zero-one loss, and in estimation under the squared-error criterion, there
exist sensor decision algorithms and a fusion rule that enable universally consistent dis-
tributed learning with abstention.

In this model, each sensor decision rule can be viewed as a selection of one of three
states: abstain, vote and send 0, and vote and send 1. With this observation, Theorem 8.4.1
can be interpreted as follows: log2(3) bits per sensor per decision is sufficient to enable
universally consistent learning in this model for distributed learning with abstention. In this
view, it is natural to ask whether these log2(3) bits are necessary. That is, can consistency
be achieved by communicating at lower bit rates?

To answer this question, a revised model was considered, precisely the same as above,
except that in response to the fusion center’s request for information, each sensor must
respond with 1 or 0; abstention is not an option and thus, each sensor responds with
exactly one bit per decision. Can the sensors communicate enough information to the
fusion center to enable universally consistent distributed learning without abstention? The
following theorems settle this question.

Theorem 8.4.2 (Predd et al. (2006a)) [Classification without Abstention] Suppose that the
sensors’ data Sn = ∪m

j=1S
j
n are i.i.d. with (Xi, Yi) ∼ PXY∀i ∈ {1, . . . , m}, and that each

sensor has knowledge of m, the size of the sensor network. Then, in binary classification
under the zero-one loss, there exist sensor decision rules and a fusion rule that enable
universally consistent distributed learning without abstention.

Theorem 8.4.3 (Predd et al. (2006a)) [Estimation without Abstention] Suppose that the
sensors’ data Sn = ∪m

j=1S
j
n are i.i.d. with (Xi, Yi) ∼ PXY ∀i ∈ {1, . . . , m}, that each sen-

sor has knowledge of m, and that the fusion rule satisfies a set of regularity conditions.6

Then, for any sensor decision rule that obeys the constraints of distributed learning without
abstention, there does not exist a regular fusion rule that is consistent for every distribution
PXY with E{Y 2} < ∞ under the squared-error criterion.

Theorems 8.4.1 and 8.4.2 are proved by construction; sensor decision algorithms and
fusion rules are specified that simultaneously satisfy the communication constraints of the
respective models and are provably universally consistent. Theorem 8.4.3 is proved via
a counter-example, and thereby establishes the impossibility of universal consistency in
distributed regression without abstention for a restricted, but reasonable class of wireless
sensor networks.

Theorems 8.4.1, 8.4.2, and 8.4.3 establish fundamental limits for distributed learning in
wireless sensor networks, by addressing the issue of whether or not the guarantees provided
by Stone’s Theorem in centralized environments hold in distributed settings. However, the
applicability of these results may be limited by the appropriateness of the model. For
example, in practice, the training data observed by a sensor network may not be i.i.d; in
the field estimation problem, data may be corrupted by correlated noise (see studies in Son

6Predd et al. (2006a) assumes that the fusion rule is invariant to the order of bits received from the sensor
network and Lipschitz continuous in the average Hamming distance.
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et al. 2005b; Sung et al. 2005, 2006). Moreover, the process by which sensors acquire data
may differ from the process observed by the fusion center; for example, sensors may be
deployed uniformly about a city, despite the fusion center’s interest in a particular district.
In the context of binary classification, Predd et al. (2004) established the achievability
of universally consistent distributed learning with abstention under a class of sampling
processes which model such an asymmetry. In general, extending the above results to
realistic sampling processes is of practical importance.

In these models, the assumption that each sensor acquires only one training example
appears restrictive. However, the results hold for training sets of any finite (and fixed) size.
Thus, these results have examined an asymptote not often considered in statistical learning,
corresponding to the limit of the number of learning agents. One can argue that if the
number of examples per sensor grows large, then universally consistent learning is possible
within most reasonable communication models. Thus, communication-constrained sensor
networks with finite training sets is an interesting case.

Finally, note that these models generalize, in a sense, models recently considered in
universal decentralized detection and estimation (e.g., Luo 2005a,b; Ribeiro and Giannakis
2006b; Xiao and Luo 2005a,b). The communication and network models in that setting are
nearly identical to those considered here. However, there the fusion center is interested in
making a binary decision or in estimating a real-valued parameter, whereas in the present
setting, the fusion center estimates a function.

8.5 Distributed Learning in Ad-hoc WSNs
with In-network Processing

In this section, we turn our attention to distributed learning in wireless sensor networks
with in-network processing, considering networks with the ad-hoc structure depicted in
Figure 8.2. One should note that in doing so, we do not exclude the possibility of there
being a fusion center. Our shift represents merely a change in focus. We consider how in-
network processing and local inter-sensor communication may improve learning by enabling
collaboration.

Many classical learning rules are infeasible in wireless sensor networks, because con-
straints on energy and bandwidth constraints preclude one from accessing the entire training
set. One approach to extending classical learning rules to distributed learning, and in partic-
ular to wireless sensor networks, focuses on developing communication-efficient training
algorithms. While recognizing the strong theoretical foundation on which existing learning
rules are designed, this approach interprets communication constraints as imposing com-
putational limits on training, and assumes there is methodology for assessing the efficiency
of training algorithms from an energy and bandwidth perspective.

In Section 8.3.1, we discussed how the importance of local communication transcends
many analyses and implementations of wireless networks. This observation has motivated
the development and analysis of many so-called local message-passing algorithms for
distributed inference in wireless sensor networks, and for distributed computation more
generally (Giridhar and Kumar 2007). Roughly speaking, message-passing algorithms are
those that use only local communications to achieve the same end (or approximately the
same end) as ‘global’ (i.e., centralized) algorithms that require sending ‘raw’ data to a
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central processing facility. Message-passing algorithms are thought to be efficient by virtue
of their exploitation of local communications. In practice, such intuitions must be for-
mally justified. In theory, application-layer abstractions of local communication constitute
a reasonable framework for studying distributed inference in general, and for developing
communication-efficient training algorithms for distributed learning in particular.

Message-passing algorithms are a hot topic in many fields, wireless communications and
machine learning notwithstanding. This surge in popularity is inspired in part by the pow-
erful graphical model framework that has enabled many exciting applications and inspired
new theoretical tools (see, e.g., Aji and McEliece 2000; Jordan 1999; Kschischang et al.
2001; Loeliger 2004; Paskin and Lawrence 2003; Pearl 1988; Plarre and Kumar 2004).
These tools are often applicable to signal processing in wireless sensor networks, since
often the correlation structure of the phenomenon under observation (e.g., a temperature
field) can be represented using a graphical model (e.g., Markov networks) and since inter-
sensor communications are envisioned to occur over similar graphical structures. Indeed,
graphical models form a broad topic in their own right, and applications to sensor net-
works are deserving of a separate article (e.g., Cetin et al. 2007; Ihler et al. 2005). Here,
our focus is specifically on how message-passing algorithms, broadly construed, may be
applied to develop training algorithms for distributed learning in wireless sensor networks.
The learning formalism aside, various connections may exist between the work we now
discuss and the previously cited studies.

8.5.1 Message-passing Algorithms for Least-Squares Regression

To simplify the exposition, let us restrict ourselves to a least-squares estimation problem,
and consider the reproducing kernel estimator discussed in Section 8.2. Also to simplify our
discussion, assume that each sensor measures a single training example, i.e., S

j
n = (xj , yj ).

Finally, assume that each sensor has been pre-programmed with the same kernel K .
Recall, reproducing kernel methods take as input a training set ∪m

j=1S
j
n = Sn = {(xj ,

yj )}mi=1 and in the least-squares regression setting output a function gλ
n : X → Y which

solves the optimization problem

min
f∈HK

[ m∑
j=1

(f (xj ) − yj )
2 + λ‖f ‖2

HK

]
. (8.7)

As discussed in Section 8.3, solving (8.7) is infeasible in wireless sensor networks, since
the data in Sn is distributed about the network of sensors.

For learning rules motivated by the principle of empirical risk minimization, a training
algorithm often must solve an optimization problem, e.g., (8.7). As a result, distributed
and parallel optimization, fields with rich histories in their own right (see, e.g., Bertsekas
and Tsitsiklis 1997; Censor and Zenios 1997), have an immediate bearing on distributed
learning. Indeed, many tools from distributed and parallel optimization have been applied to
develop tools for distributed inference; see, for example, Delouille et al. (2004); Moallemi
and Roy (2004); Predd et al. (2005, 2006b); Rabbat and Nowak (2004, 2006); Son et al.
(2005a). We now discuss three approaches to developing distributed training algorithms
that differ by the structure that they exploit and by the messages that sensors exchange.
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Training Distributively by Exploiting Sparsity

One class of distributed training algorithms is constructed to exploit an assumed relationship
between the topology of the wireless network and the correlation structure of sensors’
measurements. In the toy example of Section 8.3, for example, the temperature field may
be slowly varying in space-time and thus it may be reasonable to assume that physically
nearby sensors have similar temperature measurements. Since the sensors ‘exist’ in the
space-time feature space X , the network topology is intimately related to the topology of
feature space, and hence the correlation structure of the temperature field. Many algorithms
for distributed estimation using graphical models rely on formalizations of this powerful
intuition, e.g., Delouille et al. (2004).

To see how such a relationship may be exploited in developing a distributed training
algorithm, recall that in least-squares estimation, the Representer Theorem shows that the
minimizer gλ

n of (8.7) is implied by the solution to a system of linear equations,

(K + λI)cλ = y (8.8)

where K = (Kij ) is the kernel matrix with Kij = K(xi, xj ). If each sensor acquires a single
training datum so that there is a one-to-one correspondence between training examples and
sensors, then K is a matrix of sensor-to-sensor similarity measurements. For many kernels,
K is sparse. Various algorithms are available for efficiently solving sparse systems of linear
equations, some of which admit message-passing implementations (e.g., Golub and Loan
1989; Paskin and Lawrence 2003). When the sparsity structure of K ‘corresponds’ in a
convenient way with the topology of the network, often the messages are passed between
neighboring nodes in the network, and the result is a training algorithm that implements a
classical learning rule in a distributed way.

Guestrin et al. (2004) developed a distributed algorithm based on a distributed Gaussian
elimination algorithm executed on a cleverly engineered junction tree. A detailed description
of this algorithm requires familiarity with the junction tree formalism and knowledge of a
distributed Gaussian elimination algorithm, which unfortunately are beyond the scope of the
present chapter. Notably, the algorithm has provable finite-time convergence guarantees,
and arrives at the globally optimal solution to (8.7). Because the system in Guestrin et al.
(2004) is developed within a very general framework for distributed inference in sensor
networks (Paskin et al. 2005), this approach is applicable in many cases when the intuition
we have described fails (e.g., when sparsity is prevalent, but may not ‘correspond’ in an
intuitive way the network topology). Nevertheless, the approach appears maximally efficient
from an energy and bandwidth perspective when the intuition bears credibility. We refer the
reader to Guestrin et al. (2004) for additional detail and a description of several interesting
experiments.

Training distributively using incremental subgradient methods

Assumptions that couple the network and the correlation structure of the sensors’ observa-
tions are powerful, but may be of limited use, since it is easy to envision examples where
those assumptions break down. For example, sensors deployed about a city may observe
correlated measurements of traffic flow, despite being unable to communicate due to a
signal-obstructing skyscraper. In general, there is no fundamental, application-independent
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reason to assume a correspondence between the topology of the feature space X and the
topology of the network.

A second approach to developing distributed training algorithms exploits the additive
structure of the regularized empirical loss functional. To illustrate, suppose that agent (sen-
sor) j has access to a single training datum (xj , yj ) ∈ Sn, and for reasons that will soon
become clear, let us rewrite (8.7) as

min
f∈HK

[ m∑
j=1

(f (xj ) − yj )
2 +

m∑
j=1

λj‖f ‖2
HK

]
. (8.9)

When
∑m

j=1 λj = λ, the (unique) minimizer of (8.9) is clearly equivalent to the minimizer
of (8.7).

Gradient and subgradient methods (e.g., gradient descent) are popular iterative algo-
rithms for solving optimization problems. In a centralized setting, the gradient descent
algorithm for solving (8.7) defines a sequences of estimates

f̂ (k+1) = f̂ (k) − αk

∂F

∂f
(f̂ (k))

where F(f ) = ∑m
j=1(f (xj ) − yj )

2 + λ‖f ‖2
HK

is the objective function, and ∂F
∂f

denotes its

functional derivative. Note that ∂F
∂f

(f (k)) factors due to its additive structure. Incremental
subgradient methods exploit this additivity to define an alternative set of update equations:

j = k mod m (8.10)

f̂ (k+1) = f̂ (k) − αk

∂Gj

∂f
(f̂ (k)), (8.11)

where Gj = (f (xj ) − yj )
2 + λj‖f ‖2

HK
. In short, the update equations iterate over the m

terms in F . Incremental subgradient algorithms have been studied in detail in Nedic and
Bertsekas (1999, 2000). Under reasonable regularity (e.g., bounded ‖ ∂Gj

∂f
‖), one can show

that if αk → 0, then ‖f̂ (k+1) − gλ
n‖HK

→ 0; with a constant step size (i.e., αk = α), one
can bound the number of iterations required to make ‖f̂ (k) − gλ

n‖HK
≤ ε.

These ideas were exploited in Rabbat and Nowak (2004, 2006) to develop a message-
passing algorithm that may be applied as a distributed training algorithm. After noting that
the update equation at iteration k depends only on the data observed by sensor k mod m, a
two-step process is proposed. First, a path is established that visits every sensor. Then, the
incremental subgradient updates are executed by iteratively visiting each sensor along the
path. For example, sensor one may initialize f̂ (0) = 0 ∈ HK and then compute f̂ 1 according
to the update equations (which depend on sensor one’s only training datum). Once finished,
sensor one passes f̂ 1 on to the second sensor in the path, which performs a similar update
before passing its estimate onto the third sensor. The process continues over multiple passes
through the network, at each stage, data is not exchanged – only the current estimates. By
the comments above, only a finite number of iterations are required for each sensor to arrive
at an estimate f with ‖f − gλ

n‖HK
≤ ε. The algorithm is depicted pictorially in Figure 8.4.
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Figure 8.4 An incremental subgradient approach to training distributively (Rabbat and
Nowak 2004, 2006). Reproduced by permission of Ò 2006 IEEE.

Notably, the present setting is slightly different than the one originally conceived in
Rabbat and Nowak (2004, 2006). First, more general non-quadratic objective functions
were considered. Secondly, there the optimization variable was a real-valued (i.e., real-
valued parameter estimation); here we estimate a function. From a theoretical perspective,
the differences are primarily technical. However, practically speaking the second difference
is important. In particular, one can show that the functional derivative is given by

∂Gj

∂f
= 2(f (xj ) − yj )K(·, xj ) + 2λjf (·).

In consequence, communicating f̂ (k) ultimately requires the sensors to communicate the
data, since exchanging (xj , yj ) is necessary to share

∂Gj

∂f
(assuming that the sensors are

preprogrammed with the kernel). This is precisely what we were trying to avoid in the
first place. Thus, in the general case, the incremental subgradient approach may have
limited use for reproducing kernel methods. However, often HK admits a lower dimensional
parameterization; for example, this is the case for the linear kernel when HK is the space of
linear functions on X = (d . In that case, messages may be communicated more efficiently
to the tune of considerable energy savings. The energy-accuracy trade-off is discussed in
the full paper (Rabbat and Nowak 2006).

Note that unlike the sparsity-driven approach, the incremental subgradient-based algo-
rithm is independent of modeling assumptions which link the kernel to the topology of the
network. Indeed, the distributed training algorithms depends only on there being a path
through the network; the kernel and the network are distinct objects. Finally, note that Son
et al. (2005a) addressed a generalization of the incremental subgradient message-passing
methodology by considering a clustered network topology.
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Training distributively using alternating projection algorithms

A final approach to solving (8.7) distributively relies on sensors to locally (and iteratively)
share data, not entire functions, and thereby addresses the practical weakness that sometimes
limits the incremental subgradient approach. To construct the algorithm, assume that sensor
j can query its neighbors’ data (xi, yi) for all i ∈ Nj (where Nj ⊆ {1, . . . , m} denotes the
neighbors of sensor j ), and may use this local data to compute a global estimate for the
field by solving

min
f∈HK

[ ∑
i∈Nj

(f (xi) − yi)
2 + λj‖f ‖2

HK

]
. (8.12)

Presumably, each sensor can compute such an estimate; thus, in principle, one could
iterate through the network allowing each sensor to compute a global estimate using only
local data. The key idea behind an algorithm presented in Predd et al. (2005, 2006b) is
to couple this iterative process using a set of message variables. Specifically, sensor j

maintains an auxiliary message variable zj ∈ (, which is interpreted as an estimate of
the field at Xj . Each sensor initializes its message variable according to its initial field
measurement, i.e., zj = yj to start.

Subsequently, the sensors perform a local computation in sequential order. At its turn,
sensor j queries its neighbors’ message variables and computes fj ∈ HK as the solution to
(8.12) using {(xi, zi)}i∈Nj

as training data. Then, sensor j updates its neighbors’ message
variables, setting zi = fj (xi) for all i ∈ Nj . Since sensor j ’s neighbors may pass along their
newly updated message variables to other sensors, the algorithm allows local information
to propagate globally.

Two additional modifications are needed to fully specify the algorithm. First, multiple
passes (in fact, T iterations) through the network are made; for convenience, denote sensor
j ’s global estimate at iteration t by fj,t ∈ HK . Secondly, each sensor controls the ‘intertia’
of the algorithm, by modifying the complexity term in (8.12). Specifically, at iteration t ,
fj,t ∈ HK is found to minimize

min
f∈HK

[ n∑
i∈Nj

(f (xi) − zi)
2 + λj‖f − fj,t−1‖2

HK

]
. (8.13)

The resulting algorithm is summarized more concisely in Table 8.2, and depicted pictorially
in Figure 8.5.

Here, the algorithm has been derived through an intuitive argument. However, Predd
et al. (2005, 2006b) introduce this approach as an application of successive orthogonal
projection (SOP) algorithms (Censor and Zenios 1997) applied to a geometric topology-
dependent relaxation of the centralized kernel estimator (8.7). Using standard analysis of
SOP algorithms, Predd et al. (2005) prove that the algorithm converges in the limit of
the number of passes through the network (i.e., as T → ∞) and characterizes the point
of convergence as an approximation to the globally optimal solution to the centralized
problem (8.7). For additional detail on this general approach, we refer the interested reader
to the full paper.

A few comments are in order. First, note that as was the case for the incremental
subgradient approach, this algorithm is independent of assumptions that couple the kernel
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Table 8.2 Training distributively with alternating projections (Predd et al. 2005,
2006b)
Initialization: Neighboring sensors share training data inputs : sensor s stores

{xj }j∈Ns

Sensor s initializes zs = ys , fs,0 = 0 ∈ HK

Train: for t = 1, . . . , T

for s = 1, . . . , n

Sensor s:
Queries zj ∀j ∈ Ns

fs,t := arg minf∈HK

[∑
j∈Ns

(f (xj ) − zj )
2

+ λs‖f − fs,t−1‖2
HK

]
Updates zj ← fs,t (xj ) ∀j ∈ Ns

end
end

Figure 8.5 Training distributively with alternating projections (Predd et al. 2005, 2006b).
Ò 2006 IEEE. Reprinted with permission, from Distributed Learning in Wireless Sen-
sor Networks by Joel B. Predd, Sanjeev R. Kulkani and H. Vincent Poor, IEEE Signal
Processing Magazine, Vol 23(4), 56–69 pp. July 2006.

matrix K with the network topology. Thus, prior domain knowledge about PXY can be
encoded in the kernel; the training algorithm approximates the centralized estimator as
well as the communication constraints allow. In a simple example discussed in Predd et al.
(2006b), the statistical behavior of individual sensor’s estimates is shown to depend on the
relationship between the topology of the sensor network and the representational capacity
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of the underly reproducing kernel Hilbert space. This fact is in contrast to other analyses
which depend on the relationship between the correlation structure encoded by the kernel
and the network topology.

Second, in contrast to the previous approach, sensors share data, i.e., real-valued evalu-
ations of functions, and not the functions themselves. This significantly broadens the scope
of problems where the approach is applicable. Notably, just as in the incremental approach,
each sensor derives a global estimate, despite having access to only local data; this is useful
when the sensors are autonomous (e.g., mobile), and may make predictions on their own
independent of a fusion center. Next, sensor i can compute fi,t ∈ HK in a manner similar
to (8.8); the calculation requires solving an |Ni |-dimensional system of linear equations. As
stated in Table 8.2, the algorithm assumes that the sensors perform their local computations
in sequence. As discussed in the full paper, the computations can be parallelized, insofar
as none of the message variables is updated by multiple sensors simultaneously. Finally,
experiments in Predd et al. (2005) suggest that the algorithm may converge quickly in prac-
tice; this is promising since for energy efficiency, the number of iterations (i.e., T ) must be
bounded. Additional experiments suggest that this approach to passing data considerably
enhances the accuracy of individual sensors’ estimates.

8.5.2 Other Work

Many other learning algorithms implicitly solve (or approximately solve) an optimization
problem similar to (8.7), perhaps with a different loss function and perhaps over a different
class of functions. Thus, though the discussion has focused exclusively on least-squares
kernel regression, the key ideas are more broadly applicable, increasing their relevance to
distributed learning in sensor networks.

In the context of boundary estimation in wireless sensor networks, Nowak and Mitra
(2003) derived a hierarchical processing strategy by which sensors collaboratively prune a
regression tree. The algorithm exploits additivity in the objective function of the complexity
penalized estimator (i.e., an optimization similar in structure to (8.3)), and enables an
interesting energy-accuracy analysis. Nowak (2003) derives a distributed EM algorithm
for density estimation in sensor networks. Though formally parametric, EM is popular for
clustering problems and thus the approach may be broadly applicable. Finally, He et al.
(2005) uses a learning-theoretic approach to study change detection in sensor networks.

Before proceeding, we note the preceding discussion has contrasted various distributed
training algorithms by the structure that the algorithms exploit and by the type of messages
that sensors exchanged. A key component of future work will be to compare these methods
in the context of real-world applications, and in terms of sensor network-relevant metrics
such as energy-efficiency, latency, routing requirements, etc.

8.6 Conclusion

This chapter has surveyed the problem of distributed learning in wireless sensor networks.
Motivated by the anticipated breadth of applications of wireless sensor networks, we first
discussed how parametric methods for distributed signal processing may be inappropriate
in those applications where data is sparse and prior knowledge is limited. Then, inspired
by the success of machine learning in classical, centralized signal processing applications,
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we sought to understand whether and how the power of existing learning models and
algorithms could be leveraged for nonparametric distributed signal processing in wireless
sensors networks. After identifying the challenges that bandwidth and energy constraints
impose on learning and posing a general model for distributed learning, we considered
two general themes of existing and future research: distributed learning in networks with
a fusion center, and distributed learning in ad-hoc networks with in-network processing.
Subsequently, we discussed recent research within these themes. In doing so, we hope that
this chapter has usefully described a set of fundamental issues for nonparametric distributed
signal processing and provided an entry point to a larger body of literature.

Acknowledgements

An earlier version of this article appeared in Predd et al. (2006c), and was completed while
J. B. Predd was a Ph.D. candidate at Princeton University. This research was supported
in part by the Army Research Office under Grant DAAD19-00-1-0466, in part by Draper
Laboratory under IR&D 6002 Grant DL-H-546263, in part by the National Science Foun-
dation under Grants CCR-02055214 and CCR-0312413, and in part by the U. S. Army
Pantheon Project.

Bibliography

Aji SM and McEliece RJ 2000 The generalized distributive law. IEEE Transactions on Information
Theory 46(2), 325–343.

Akyildiz IF, Su W, Sankarasubramaniam Y and Cayirci E 2002 A survey on sensor networks. IEEE
Communications Magazine 40(8), 102–114.

Al-Ibrahim MM and Varshney PK 1989 Nonparametric sequential detection based on multisensor data.
In Proceedings of the 23rd Annual Conference on Information Science and Systems, pp. 157–162,
The Johns Hopkins University, Baltimore, MD.

Anthony M and Bartlett P 1999 Neural Network Learning: Theoretical Foundations. Cambridge
University, Cambridge, UK.

Bandyopadhyay S and Coyle E 2003 An energy efficient hierarchical clustering algorithm for wireless
sensor networks. In Proceedings of the 22nd Annual Joint Conference of the IEEE Computer and
Communications Societies (Infocom), vol. 3, pp. 1713–1723, San Francisco, CA.

Barkat M and Varshney PK 1989 Decentralized CFAR signal detection. IEEE Transactions on
Aerospace and Electronic Systems 25(2), 141–149.

Berger T, Zhang Z and Vishwanathan H 1996 The CEO problem. IEEE Transactions on Information
Theory 42(3), 887–902.

Bertsekas DP and Tsitsiklis JN 1997 Parallel and Distributed Computation: Numerical Methods.
Athena Scientific, Belmont, MA.

Blatt D and Hero A 2004 Distributed maximum likelihood estimation for sensor networks. In Proceed-
ings of the International Conference on Acoustics, Speech, and Signal Processing, pp. 929–932,
Montreal, Quebec, Canada.

Blum R, Kassam SA and Poor HV 1997 Distributed detection with multiple sensors: Part
II – Advanced topics. Proceedings of the IEEE 85(1), 64–79.

Bordes A, Ertekin S, Weston J and Bottou L 2005 Fast kernel classifiers with online and active
learning. Journal of Machine Learning Research 6, 1579–1619.



210 DISTRIBUTED LEARNING IN WIRELESS SENSOR NETWORKS

Breiman L 1996 Bagging predictors. Machine Learning 26(2), 123–140.
Censor Y and Zenios SA 1997 Parallel Optimization: Theory, Algorithms, and Applications. Oxford

University Press, New York.
Cesa-Bianchi N, Freund Y, Haussler D, Helmbold DP, Schapire RE and Warmuth MK 1997 How to

use expert advice. Journal of the ACM 44(3), 427–485.
Cetin M, Chen L, Fisher JW, Ihler AT, Kreidl OP, Moses RL, Wainwright MJ, Williams JL and

Willsky AS 2007 Graphical models and fusion in sensor networks In Wireless Sensor Networks:
Signal Processing and Communications Perspectives (ed. Swami A, Zhao Q, Hong YW and Tong
L) Wiley, New York.

Chamberland JF and Veeravalli VV 2004 Asymptotic results for decentralized detection in power
constrained wireless sensor networks. IEEE Journal on Selected Areas in Communications 22(6),
1007–1015.

Chawla NV, Hall LO, Bowyer KW and Kegelmeyer WP 2004 Learning ensembles from bites: A
scalable and accurate approach. Journal of Machine Learning Research 5, 421–451.

Chen B, Tong L and Varshney PK 2006 Channel aware distributed detection in wireless sensor
networks. IEEE Signal Processing Magazine, Special Issue on Distributed Signal Processing in
Sensor Networks.

Cover TM 1968 Rates of convergence for nearest neighbor procedures. In Proceedings of the Hawaii
International Conference on Systems Sciences, pp. 413–415, Honolulu, HI.

D’Costa A and Sayeed AM 2003 Collaborative signal processing for distributed classification in
sensor networks. In Proceedings of Second International Workshop on Information Processing in
Sensor Networks, pp. 193–208, Palo Alto, CA.

D’Costa A, Ramachandran V and Sayeed AM 2004 Distributed classification of Gaussian space-time
sources in wireless sensor networks. IEEE Journal of Selected Areas of Communication, Special
Issue on Fundamental Performance Limits of Wireless Sensor Networks 22(6), 1026–1036.

Delouille V, Neelamani R and Baraniuk R 2004 Robust distributed estimation in sensor networks
using the embedded polygons algorithm. In Proceedings of the Third International Symposium on
Information Processing in Sensor Networks, pp. 405–413, Berkeley, CA.

Devroye L, Györfi L and Lugosi G 1996 A Probabilistic Theory of Pattern Recognition. Springer,
New York.

Duda R, Hart P and Stork D 2001 Pattern Classification. 2nd edn. Wiley-Interscience, New York.
Freund Y and Schapire RE 1997 A decision-theoretic generalization of on-line learning and an

application to boosting. Computer and System Sciences 55(1), 119–139.
Freund Y, Schapire RE, Singer Y and Warmuth MK 1997 Using and combining predictors that spe-

cialize. In Proceedings of the Twenty-Ninth Annual ACM Symposium on the Theory of Computing,
pp. 334–343, El Paso, Texas.
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Graphical Models and Fusion
in Sensor Networks

Müjdat Çetin, Lei Chen, John W. Fisher III, Alexander T.
Ihler, O. Patrick Kreidl, Randolph L. Moses, Martin J.
Wainwright, Jason L. Williams, and Alan S. Willsky

9.1 Introduction

Graphical models provide a rich framework for capturing the statistical relationships among
large numbers of variables, some of which may be measured and others of which are to
be estimated or inferred from the available data. In addition, the natural algorithms for
performing such inference tasks involve parallel message-passing procedures – essentially
the passing of estimated statistical likelihoods – for the fusion of information across the
entire graphical model. Because of both their graphical structure and the distributed nature
of the inference procedures they admit, graphical models provide a natural framework
to investigate fusion algorithms for sensor networks, an observation that has motivated a
number of researchers, including the authors. Moreover, since the building or learning of
such models, the analysis of such inference algorithms, and the development of enhanced
algorithms are a rich, active, and growing field, there is a rich foundation on which to build
methodologies for sensor network fusion algorithms.

The objective of this chapter is to confirm this observation and also to make clear that
there are additional issues that arise in the context of sensor networks that require new
questions to be asked that have not typically been part of the line of inquiry for graphical
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models. The result is a new and very rich research area that has already added some
important new results for sensor networks and, interestingly, also for graphical models.

In the next section of this chapter we present a concise introduction to some of the basic
ideas underlying graphical models and their inference algorithms, as well as an important
extension that generalized particle filtering to graphical models. Following this, we intro-
duce two sensor network applications that we use as vehicles to illustrate the methods.
These applications are self-localization in sensor networks and distributed data association
and object tracking. The discussion of these applications allows us to discuss and illustrate
a concept of primary importance. Specifically, the mapping of a sensor network fusion
problem to a graphical model is far from unique and different choices of graphical repre-
sentations can have drastically different implications for the organization and effectiveness
of the fusion algorithms that result.

The core of this chapter is the description of research that deals with several of the
new and key issues that arise in adapting and extending graphical model inference algo-
rithms to sensor networks. In particular, we describe two approaches – message censoring
and efficient communication of particle-based messages – aimed at addressing the fact that
communication resources in sensor networks are generally severely limited. Such meth-
ods introduce errors into the transmitted messages (in order to conserve communication
resources), and we summarize new results analyzing the impact of such errors on overall
fusion performance, providing a complete audit trail from bits to fusion accuracy. We then
examine a second very important issue, namely the fact that there is considerable flexibility
in how inference computations are distributed among sensor nodes, leading (especially in
tracking applications) to problems of the handoff of inference responsibilities. We do this
in the context of power-constrained resource allocation, in which we must account not
only for the power consumed in taking and communicating messages but also the power
required for sensor handoff. All of the methods described so far involve the approximation
of standard message-passing algorithms to accommodate power constraints. The last line
of research we describe is that of completely redesigning message passing by taking into
account from the start that there are bit-limitations on transmissions. This work, which
makes contact with the field of decentralized team theory, also makes clear that there is a
communication cost if sensors must organize themselves to achieve joint objectives. Our
presentation of these methods is necessarily concise, and we provide ample references to
complete treatments of each of these lines of investigation. We close the chapter with
a brief discussion of some research directions that we believe are critical for the way
forward.

9.2 Graphical Models

We begin with a brief discussion of graphical models, focusing on aspects related to infer-
ence and linking these to distributed inference in sensor networks in later sections. In this
chapter we focus exclusively on the class of graphical models defined on undirected graphs
(i.e., in which there is no parent-child relationship between the nodes connected by any
edges). Such models are also commonly referred to as Markov random fields. There is
also a very important class of graphical models defined on directed graphs – sometimes
referred to as Bayesian networks – and we refer the reader to the literature (e.g., Pearl
(1988)) for development for these models. Also, our discussion here is, perforce, brief and
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focused on the characteristics and results we require in our development. We refer the
reader to the references, especially to the survey article and books Jordan (1998, 2004, in
preparation); Lauritzen (1996); Whittaker (1990), for complete developments of this very
important area.

9.2.1 Definitions and Properties

A graphical model is specified by an undirected graph, G = (V , E), consisting of a vertex or
node set V , and a set of edges E ⊂ V × V . Associated with each node v ∈ V is a random
variable Xv; the full collection X = {Xv, v ∈ V } of random variables must collectively
satisfy a set of Markov properties with respect to G. Specifically, for any subset U of
V , let XU = {Xv, v ∈ U}. We say that the random vector X is Markov with respect to
G if for any partition of V into disjoint sets A, B, C, in which B separates A and C

(i.e., all paths in G from A to C include vertices in B), the random vectors XA and XC

are conditionally independent given XB . For the ‘graph’ associated with time series – i.e.,
consecutive points in time with each point connected to its immediate predecessor and
successor – this corresponds to the usual notion of temporal Markovianity (i.e., that the past
and future are conditionally independent given the present). For general graphs, however,
the Markov property requires a far richer set of conditional independencies and associated
challenges in both specifying such distributions and in performing inference using them.
By way of example, consider the graph of Figure 9.7(a) (used for subsequent analysis)
in which the variables x and y are conditionally independent given variables w and z.
However, the w and z are not conditionally independent given x and y due to the edge
between w and z.

The celebrated Hammersley-Clifford Theorem (Brémaud 1991) provides a sufficient
condition (also necessary for strictly positive probability distributions) for the form that
the joint distribution must take in order to be Markov with respect to G. Specifically, let
C denote the set of all cliques in G, where a subset of nodes C is a clique if it is fully
connected (i.e., an edge exists between each pair of nodes in C). The random vector X

is Markov with respect to G if (and only if for strictly positive probability distributions)
its distribution admits a factorization as a product of functions of variables restricted to
cliques of the form

p(x) =
∏

C∈C ψC(xC)

Z
, where Z �

∑
x

∏
C∈C

ψC(xC) (9.1)

is the partition function, and the ψC(xC) are so-called compatibility functions. The loga-
rithms of these compatibility functions are commonly referred to as potentials or potential
functions.

For simplicity we will assume for the remainder of this chapter that each of the nonzero
potentials (or equivalently each compatibility function in equation (9.1) that is not constant)
is a function either of the variable at a single node of the graph (node potentials) or of
the variables at a pair of nodes corresponding to an edge in E (edge potentials). In this
case, (9.1) takes the form:

p(x) =
(∏

s∈V ψs(xs)
) (∏

(s,t)∈E ψs,t (xs, xt )
)

Z
(9.2)
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Note that any graphical model can be put into this form by appropriate node aggrega-
tion (Brémaud 1991). While all of the ideas that are presented here can be extended
to the more general case, pairwise potentials are sufficient for the specific applications
considered in this chapter. Moreover, the communication interpretation of the so-called
message-passing algorithms used herein are more easily explained in this context.

As long as G is a relatively sparse graph, the factorizations (9.1) or (9.2) represent
parsimonious means to describe the joint distribution of a large number of random vari-
ables – in the same way that specifying an initial (or final) distribution and a set of one-step
transition distributions is a compact way in which to specify a Markov chain. Morever, for
many inference and estimation problems (including those described in this chapter), such a
specification is readily available. The challenge, however, is that unless the graph has very
special properties – such as in the case of Markov chains – the compatibility functions do
not readily describe the quantities of most interest, such as the marginal distribution of the
variables at individual (or small sets of) nodes or the overall peak of the distribution jointly
optimized over all nodes. Indeed, for discrete-valued random variables the computation of
such quantities for general graphs is NP-Hard.

9.2.2 Sum-Product Algorithms

For graphs without cycles (Markov chains and, more generally, graphical models on trees),
computation of the marginal distributions is relatively straightforward. In this case, the node
and pair-wise potentials of the joint distribution in (9.2) for any cycle-free graph can be
expressed in terms of the marginal probabilities at individual nodes and joint probabilities
of pairs of nodes connected by edges (Cowell et al. 1999; Wainwright et al. 2003):

p(x) =
∏
s∈V

ps(xs)
∏

(s,t)∈E

pst (xs, xt )

ps(xs)pt (xt )
, (9.3)

That is, ψs(xs) = ps(xs) (or ψs(xs) = ps(xs)p(ys |xs) when there is a measurement ys

associated with xs) and ψ(xs, xt ) = p(xs ,xt )

p(xs )p(xt )
. Marginal probabilities can be efficiently

calculated in a distributed fashion by so-called sum-product algorithms. Specifically, as
shown in (Pearl 1988), the marginal probabilities at any node s in the graph can be expressed
in terms of the local potential ψs at node s, along with a set of so-called messages from
each of its neighbors in the set N (s) = {t ∈ V | (s, t) ∈ E}. The message from node t to
node s is a function Mts(xs) that (up to normalization) represents the likelihood function of
xs based on the subtree rooted at t and extending away from s. In particular, the marginal
distribution ps takes the form

ps(xs) ∝ ψs(xs)
∏

t∈N(s)

Mts(xs). (9.4)

Furthermore, in the absence of cycles, these messages are related to each other via a
sum-product formula:

Mts(xs) ∝
∑
xt

ψst (xs, xt )ψt (xt )
∏

u∈N(t)\s
Mut (xt ). (9.5)
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The product operation embedded in the message computation from node t to s combines the
information in the subtree rooted at node t , combining the likelihood information from all
neighbors of node t other than s with the local potential at node t . This yields a likelihood
function for the random variable Xt at node t . This is then converted to a likelihood for
the random variable Xs at node s by multiplying by the compatibility function between
these two nodes and then ‘summing’ or integrating out the variable at node t in a fashion
analogous to the Chapman-Kolmogorov equation in a Markov chain.

Together equations (9.4) and (9.5) relating messages throughout the loop-free graph
represent a set of fixed-point equations that can be solved in a variety of ways correspond-
ing to different message-passing algorithms. For example, one can solve these equations
explicitly, much as in Gaussian elimination, by starting at leaf nodes, working inward
toward a ‘root’ node, and then propagating back toward the leaves – this is a generaliza-
tion of two-pass smoothing algorithms for Markov chains. An alternative is to solve these
equations iteratively: we begin with guesses (often taken simply to be constant) of all of
the messages and iteratively update messages by substitution into the fixed-point equations.
Each step of this procedure involves passing the current guess of messages among neigh-
boring nodes. While there is great flexibility in how one schedules these messages, the
happy fact remains that after a sufficient number of iterations (enough so that information
propagates from every node to every other), the correct messages are obtained from which
the desired probabilities can then be computed.

9.2.3 Max-Product Algorithms

Interestingly, for loop-free graphs, a variant of this approach also yields the solution to
the problem of computing the overall maximum a posteriori (MAP) configuration for the
entire graphical model. For such graphical models, there is an alternative factorization of
p(x) in terms of so-called max-marginals. As their name would suggest, these quantities
are defined by eliminating variables through maximization (as opposed to summation); in
particular, we define

qs(xs) : = max
xu,u∈V \s

p(x1, . . . , xn) (9.6a)

qst (xs, xt ) : = max
xu,u∈V \{s,t}

p(x1, . . . , xn). (9.6b)

It is a remarkable fact that for a tree-structured graph, the distribution (9.1) can also be
factorized in terms of these max-marginals, namely:

p(x) ∝
∏
s∈V

qs(xs)
∏

(s,t)∈E

qst (xs, xt )

qs(xs)qt (xt )
. (9.7)

Furthermore, there are equations analogous to those for the sum-product algorithm that
show how these quantities can be computed in terms of node potentials and messages,
where the fixed point equations involve maximization rather than summation (yielding
what are known as max-product algorithms). The solution of these fixed point equations
can be computed via leaf-root-leaf message passing (corresponding to dynamic program-
ming/Viterbi algorithms Forney (1973)) or by iterative message passing with more general
message scheduling.
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9.2.4 Loopy Belief Propagation

While the representation of marginal distributions or max-marginals at individual nodes
in terms of messages holds only if the graph is cycle-free, equations (9.4) and (9.5) are
well-defined for any graph, and one can consider applying the sum-product algorithm to
arbitrary graphs which contain cycles (often referred to as loopy belief propagation), this
corresponds to fusing information based on assumptions that are not precisely valid. For
example, the product operation in equations (9.4) as well as (9.5) corresponds to the fusion
of information from the different neighbors of a node, t , assuming that the information
contained in the messages from these different neighbors are conditionally independent
given the value of xt , something that is valid for trees but is decidedly not true if there are
cycles.

Despite this evident suboptimality, this loopy form of the sum-product algorithm has
been extremely successful in certain applications, most notably in decoding of low-density
parity check codes (Kschischang 2003; Richardson and Urbanke 2001) which can be
described by graphs with long cycles. In contrast, many sensor network applications (as
well as others) involve graphs with relatively short cycles. This has led to a considerable
and still growing body of literature on the analysis of these algorithms on arbitrary graphs,
as well as the development of new ones that yield superior performance. For arbitrary loopy
graphs, the reparameterization perspective on these algorithms (Wainwright et al. 2003), in
conjunction with a new class of efficiently computable bounds (Wainwright et al. 2005b)
on the partition function Z, provides computable bounds on the error incurred via applica-
tion of sum-product to loopy graphs. Similar analysis is also applicable to the max-product
updates (Freeman and Weiss 2001; Wainwright et al. 2004). The fact that the max-product
algorithm may yield incorrect (i.e., non-MAP) configurations motivates the development of
a new class of tree-reweighted max-product algorithms (TRMP) (Wainwright et al. 2005a)
for which – in sharp contrast to the ordinary max-product updates – there are a set of
testable conditions to determine if the solution is indeed the MAP configuration. Tight
performance guarantees can be provided for TRMP for specific classes of graphs (Feldman
et al. 2005; Kolmogorov and Wainwright 2005). More broadly, we refer the reader to vari-
ous research and survey papers, e.g. (Loeliger 2004; Wainwright and Jordan 2005; Yedidia
et al. 2005), as well as citations at the end of this chapter, which provide only a sampling
of this rapidly growing literature.

9.2.5 Nonparametric Belief Propagation

We close with a brief discussion of an algorithm which will play an important role in
later sections. Whether applied to loop-free or loopy graphs, message-passing algorithms
corresponding to the iterative solution of (9.5) require the transmission of a full likelihood
function, parameterized by the variable at the receiving node. When those variables are dis-
crete (take on finitely many values), the message can be represented as a vector of numbers;
when the variables are jointly Gaussian, they can be described by means and covariances.
However, for non-Gaussian continuous variables, in principle we need to transmit an entire
continuous function. One common approach is to discretize the underlying continuous
variables. Unfortunately, this can often lead to high (and unwarranted) computational com-
plexity (and in sensor networks, a high communication overhead as well). In nonlinear,
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non-Gaussian systems defined on Markov chains, particle filtering is often used to avoid
these high computational and representation costs. Here, we describe a recently developed
generalization of particle filtering to more complex graphical models, called Nonparametric
Belief Propagation, or NBP (Sudderth et al. 2003).

Particle filtering also involves an equation similar to (9.5), with one very important
simplification: there is no ‘product’, since there is only one ‘other’ neighbor of node
t . The algorithm takes a set of particles, representing samples from the single message
corresponding to the product term in (9.5), weights these particles by the local node’s
compatibility function (and perhaps resamples from this weighted collection of particles),
and then performs the ‘sum’ operation by simulating the transition dynamics from node t

to s, i.e., for each sample at node t we sample from the transition distribution to generate
a sample at node s.

All of these steps, with one significant exception, apply equally well to message pass-
ing in general graphical models. The difficulty, however, arises from the fact that we have
the product of several particle-based messages (one from each neighbor) at each node.
As developed in (Sudderth et al. 2003), in order to make sense of this product, one can
interpret each particle-based message as a nonparametric estimate of the likelihood func-
tion/probability density corresponding to the exact message, which can be smoothed to
create a well-defined product. For example, if we use Gaussian kernels for these nonpara-
metric densities, the set of particles corresponds to a Gaussian sum. As a result, the problem
of generating samples from the product of messages, each represented by a set of particles,
reduces to that of drawing samples from a density defined by the product of a collection
of Gaussian sums.

This operation presents some computational difficulty: unless we are careful, we may
have a geometrically growing number of terms in the aforementioned Gaussian sums, too
many to work with efficiently. A key to drawing samples efficiently is to draw them without
ever explicitly constructing the true product. Specifically, one can generate a sample in two
steps: first, choose one of the Gaussian mixture components in the product from which
to sample (i.e., the set of labels corresponding to one component in each of the incoming
messages), and then drawing a sample from the Gaussian corresponding to that set of labels.
Since this latter step is straightforward, the challenge is in the former (sampling the labels).
As one solution, importance and Gibbs sampling methods can be applied to draw a label
without enumerating all possible combinations.

Additionally, the sampling process can be made dramatically more efficient by using
a multi-resolution representation based on the so-called k-dimensional (or KD-) trees (a
structure that will also play a key role in efficient coding and communication of messages in
Section 9.4.2). Given a set of k-dimensional particles (i.e., xs is a k-dimensional real-valued
random variable) representing one of the messages in (9.5), we create a multi-resolution
hierarchical clustering of the particles, beginning with all particles clustered together at the
root of the tree. Proceeding downward through the tree, at each node we subdivide that
node’s cluster into two sub-clusters (associated with the children of the current node) by
splitting the data along one of the k dimensions (and cycle through each of these dimensions
as we proceed down the tree) until at the finest level of the tree we have individual particles.
The sampling operations described previously can then be accomplished very efficiently
using this coarse-to-fine representation; we refer the reader to (Ihler et al. 2003) for details.
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9.3 From Sensor Network Fusion to Graphical Models

In this section we describe how one maps a fusion problem involving a network of sen-
sors into an inference problem on a graphical model. Such a mapping might at first seem
trivial, as a natural graph already exists, defined by the sensor nodes and the inter-sensor
communication structure. However, it is the informational structure of the inference prob-
lem – involving the relationships between sensed information and the variables about which
we wish to perform estimation – that forms the basis of the mapping, and is just as critical
as the communication structure of the problem. We illustrate this mapping by describing
two sensor networks applications, focusing primarily on their informational structure.

9.3.1 Self-Localization in Sensor Networks

A crucial first step for many sensor network applications is that of sensor localization –
determining the locations of sensor nodes in a network. Figure 9.1 illustrates the localization
problem. Each node corresponds to a sensor, and the random vector at that node describes
sensor location, and also perhaps other calibration variables such as the sensor’s orientation
(e.g., if the node provides directional-sensing capability), and the time offset of its internal
clock (e.g., if inter-sensor time-of-flight measurements are used by the network).

To simplify the discussion we will consider only location variables, although the frame-
work we describe extends immediately to a more general setting. We consider a case in
which the available information for estimating sensor locations consists of: (i) uncertain
prior information about the location of a subset of the sensors (e.g., if any of the sensors
are provided with GPS); (ii) how likely sensors are to ‘hear’ one another and attempt to
measure their inter-sensor distance (typically only possible for nearby pairs of sensors);
and (iii) any distance measurements so obtained. Specifically, let us denote by ρs(xs) the
prior location probability distribution for sensor s, if any, let Pr(xs, xt ) be the probability

(a) (b)

Figure 9.1 Sensor localization: (a) the physical location of a collection of sensors may
be represented as (b) a graphical model in which each node corresponds to a sensor’s
location variables and each edge corresponds to observed information, such as the inter-
sensor distance measurements between a pair of sensors. Reproduced by permission of Ò
2006 IEEE.
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of observing a distance measurement between two sensors s, t located at xs and xt , and let
ρL(lst |xs, xt ) be the probability distribution the measured distance lst given that the true
sensor positions are xs and xt . Notice that all three sources of information involve only the
variables at a single sensor or at pairs of sensors; thus we may use a pairwise graphical
model to describe the joint distribution of sensor locations, with each node in the graph
associated with one sensor and its location or calibration variables of interest. One may
thus immediately write that the joint probability distribution has the form of (9.2), with

ψs(xs) = ρs(xs) (9.8a)

ψst (xs, xt ) =
{

Pr(xs, xt )ρL(lst | xs, xt ) ; if lst is observed
1 − Pr(xs, xt ) ; otherwise

(9.8b)

If we momentarily ignore the information content of aspect (ii) (as is common in many
localization problems, though we shall discuss its inclusion subsequently) we immediately
obtain the graphical model shown in Figure 9.1(b), in which an edge connects each pair
of sensors which are able to measure their distance. In this case, single-node potentials are
included for those sensors with prior location information, and edge potentials represent
the likelihood function for the locations of the two sensors based on the observed distance
between them. Note that the above graphical model structure depends on the information
structure of the measurements, rather than on the communication structure of the network.

The sensor localization problem is then precisely one of computing the best estimates of
all sensor locations given the prior and measured information. As an optimization problem,
this has been well studied by others, (Moses et al. 2003; Patwari et al. 2003; Thrun 2006),
often under the assumption that the distributions (ρs , ρL) involved are Gaussian so that its
solution entails the nonlinear optimization of a quadratic cost function to obtain a point
estimate. However, by formulating this problem as one of inference for a graphical model
(in which localization corresponds to computing the marginal distributions of variables
at each node), we directly obtain message-passing algorithms (such as sum-product) that
distribute the computations across the network. The resulting solution is an estimate of the
marginal distribution of the location variables, rather than a point estimate or confidence
interval, and thereby provides a detailed statistical description of the localization solution.

Moreover, the graphical model formulation allows us to easily include features which
bring additional realism, accuracy, and aptness to the problem (Ihler et al. 2005b; Ihler
2005). In particular, anomalous range measurements can occur with nontrivial probability;
for example, anomalies can occur when the direct path between sensors is obscured, or
when malicious signals are sent to thwart a localization process. In the graphical model
framework, anomalous estimates are easily handled through a simple modification of the
edge potential likelihood functions to capture such measurement errors. Also, location dis-
tributions for sensors can be multi-modal even when measurements are Gaussian – for
example, receiving perfect range measurements from two neighboring sensors whose loca-
tions are known perfectly yields two possible locations. The NBP formulation finds an
estimate of the node location probability distributions – as opposed to a point estimate
such as the distribution maximum – from which multi-modal, non-Gaussian, or other char-
acteristics are readily seen. Representing such multi-modality at the individual node level
is one of the strengths of the NBP algorithm, and is far easier than dealing with this at a
centralized level.
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The graphical model formulation of the localization problem also provides a natural
mechanism for including uncertain information about which pairs of sensors are able to
measure distance. This information can improve the aptness and reduce estimation error in
the location estimates. For example, the topmost sensor node in Figure 9.1 forms a location
estimate using distance measurements from two very closely-located sensors. Thus, the
probability distribution for the location estimate will have large values in an entire circular
region centered at the midpoint of these two other sensors. However, if we also account
for the fact that the node on the other side of these two sensors cannot hear (or can hear
only with small probability) the topmost sensor, this circular ambiguity is considerably
reduced. Incorporating the absence of a measurement as an indicator of sensors being more
distant from each other can be difficult to accommodate in the traditional optimization
framework (for example, it is certainly not a simple quadratic cost). In this graphical
model formulation, however, this information can be included simply by adding edges to
the graph. Specifically, we include 2-step (or more generally, n-step) edges, where a 2-step
edge is one between sensors that are heard by a common sensor but cannot hear each other
(Ihler et al. 2005b). Including these additional edges increases the complexity of inference
slightly, although experimentally it appears that a few edges are often sufficient to resolve
most of the ambiguities which may arise.

The fact that the random variables in the localization graphical model are continuous-
valued – leading to our use of the particle-based NBP algorithm – raises a number of
questions unique to sensor networks related to how best to use scarce communication
resources. For example, how many particles do we need to send, and how can we encode
them efficiently? Moreover, how do we adapt these choices as estimates evolve dynamically
(e.g., as ambiguities due to multi-modality in distributions resolve themselves)? These are
among the issues considered in Section 9.4.

9.3.2 Multi-Object Data Association in Sensor Networks

A second application for sensor networks is that of multi-sensor, multi-object tracking.
This is a challenging problem even for centralized algorithms in large part because of
the embedded problem of data association, i.e., of determining which measurements from
different sensors correspond to the same object. For sensor networks there are additional
challenges, due to the need for distributed implementation, but typical networks also have
structure; e.g. sensors have limited sensing range overlapping the range of a limited number
of other sensors. This suggests new approaches for solving data association problems that
are computationally feasible and fully distributed.

Figure 9.2 depicts a notional example of the problem. Here 25 sensors cover a region
of interest with overlapping areas of regard. Several targets are located within the region,
each sensed by one or more sensors. In this case, the mapping of the inference problem
to a graphical model is not unique. Different mappings reflect computational tradeoffs
leading to different solutions than in typical centralized multi-target tracking approaches.
In particular, a widely used centralized approach (Kurien 1990) organizes data associ-
ation hypotheses based on so-called track hypotheses, leading to data structures – and
corresponding graphical models – in which, roughly speaking, the nodes correspond to
targets.
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Figure 9.2 A snapshot of a typical data association scenario in a sensor network. 25
sensors (circle nodes) and the bearing-only measurements (line segments) are shown. Prior
distributions of target locations are represented nonparametrically with samples from the
individual marginal target distributions (appearing as clusters). Reproduced by permission
of Ò 2006 IEEE.

In a sensor network, however, it is advantageous to organize the representation
around sensors rather than targets. For centralized processing, such measurement-oriented
approaches have been discarded for the same basic reason that purely sensor-based
representations do not work here. In particular, consider a simple situation in which we
know how many targets are present and we know which sensors see which targets. If we
wish to use a model in which the nodes are in 1-1 correspondence with the sensors, the
variable to be estimated at each node is simply the association vector that describes which
measurement from that sensor goes with which target, which measurements are false alarms,
and which targets in its area of regard it fails to detect. The problem with such a graphical
model is that if multiple targets are seen by the same set of sensors, the likelihoods of
these sets of associations (across sensors and targets) are coupled, implying that in the
representation in (9.1), we must include cliques of size larger than two. In principle, these
cliques can be quite large, and it is precisely for this reason that the association problem
is NP-Hard.

By taking advantage of the sparse structure of sensor networks; i.e., the fact that each
sensor has only a limited field of view and thus has only a modest number of other sensors
with which it interacts and small number of targets within its measurement range – one
can readily construct a hybrid representation comprised of two types of nodes. Sensor
nodes capture the assignment of groups of measurements to multi-target nodes in addition
to assignments that do not have any multi-sensor/target contention. Multi-target nodes
corresponding to sets of targets seen by the same set of 3 or more sensors. In such a
model, the variable at each sensor node captures the assignment of groups of measurements
to each of these multi-target nodes as well as any assignments that do not have such a
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Figure 9.3 (a) A piece of a partially organized sensor network, where the sensor-target
coverage relationship is ambiguous. Two sensors with their surveillance regions (s1 and s2).
Prior distributions of two targets are represented nonparametrically as samples from and
individual marginal target distributions (T2 and T2). The surveillance area is divided into
three non-overlapping subregions (r1 –r3), each of which is covered by a distinct subset
of sensors. (b) The graphical model for the scenario in (a); circles, squares, and triangles
correspond to sensors, subregions, and targets, respectively. Reproduced by permission of
Ò 2006 IEEE.

level of multi-sensor/target contention. Moreover, the resulting graphical model yields a
representation as in (9.2) with only pairwise potentials (Chen et al. 2005b). Furthermore,
while we have described the idea for the case in which we already know which targets are
seen by which sets of sensors, it is also possible to formulate graphical models that deal with
the problem of also determining which targets are seen by which subsets of sensors. We do
so by introducing virtual nodes representing regions of space corresponding to overlaps in
areas of regard of multiple sensors, as shown in Figure 9.3. In addition, although we have
discussed the data association problem at a single time point here for simplicity, the tracking
problem is of course dynamic, and our framework can be generalized to incorporate data
from multiple time slices by using a multiple hypothesis tracking-like approach (Chen et al.
2005a).

For the data association problem, both the computation of marginal probabilities and
of the overall MAP estimate are of interest. The MAP estimate is of importance because
it captures consistency of association across multiple sensors and targets (for example,
capturing the fact that one measurement cannot correspond to multiple targets). As a result,
algorithms such as sum-product and max-product are both of interest, as is the issue of
communications-sensitive message passing, a topic to which we turn in the next section.

9.4 Message Censoring, Approximation, and Impact
on Fusion

The sensor network applications in the previous section are two of many that can be
naturally cast as problems of inference in graphical models – at least in part, as there
are other issues, including power conservation and careful use of scarce communication
resources, that must be considered. Using the two previous applications as examples, we
describe approaches to dealing with such power and communication issues.



9.4. MESSAGE CENSORING, APPROXIMATION, AND IMPACT ON FUSION 227

9.4.1 Message Censoring

As described in the preceding section, multi-object data association in sensor networks
can be formulated as a problem either of computing the marginal probabilities or the
overall MAP estimate for a graphical model whose variables are discrete and represent
various assignments of measurements to objects or spatial regions. In our work we have
applied a variety of different algorithms to solve this problem, including the sum-product
algorithm (Kschischang et al. 2001) for the computation of approximate marginals, the
max-product algorithm (Wainwright et al. 2004) for the computation of approximate MAP
estimates and the TRMP algorithm (Wainwright et al. 2004) for the computation of the
true MAP estimate.

One issue with all of these algorithms is that messages are, in principle, continually
transmitted among all of the nodes in the graphical model. In typical graphical model
applications some type of global stopping rule is applied to decide when the inference
iterations should be terminated. Also, it is often the case that convergence behavior can
depend strongly on the message schedule – i.e., the order in which messages are created,
transmitted, and processed. For sensor network applications, convergence criteria or mes-
sage schedules that require centralized coordination are out of the question. Rather, what
is needed are local rules by which individual nodes can decide, at each iteration, whether
it has sufficient new information to warrant the transmission of a new message, with the
understanding that the receiving node will simply use the preceding message if it does not
get a new one, and will use a default value corresponding to a noninformative message if it
has not received any prior message. This formulation also allows for transmission erasures.

A simple local rule for message censoring is the following: first, we interpret each
message as a probability distribution on the state of the node to which the message is to
be sent; easily accomplished by normalizing the message. We then compute the Kullback-
Leibler Divergence (KLD) between each message and its successor,

D
(
Mk

ts‖Mk−1
ts

) =
∑
xs

Mk
ts(xs) log

Mk
ts(xs)

Mk−1
ts (xs)

, (9.9)

as a measure of novel information and send Mk
ts only if D

(
Mk

ts‖Mk−1
ts

)
exceeds a threshold

ε. This procedure is completely local to each node and provides for network adaptivity, as
these rules lead to data-dependent message scheduling; indeed, it is quite common for a
node to become silent for one or more iterations and then to restart sending messages as
sufficiently new information reaches it from elsewhere in the network.

When applying the above method to algorithms such as sum-product, we observe
that major savings in communication (hence power) can be achieved with modest per-
formance loss as compared to standard message passing algorithms. An example is shown
in Figure 9.4, where the data are obtained by simulating tracking of 50 targets in a 25 sen-
sor network and censored versions of max-product are readily compared to max-product
and TRMP. In the figure, both communication cost and data association error are shown
for censored versions of the max-product algorithm as the censoring threshold is varied.
Also shown are the communication and association error for the standard max-product and
TRMP algorithms. It can be seen that for certain thresholds the data association perfor-
mance loss is very small, while the amount of communication is dramatically reduced.
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Figure 9.4 Performance-communication trade-off with varying thresholds for message
censoring. Inference performance is evaluated by the association error rate, which is defined
as the ratio of the number of measurements that are assigned to wrong targets to the total
number of measurements. The amount of communication is defined as the number of
messages sent by each node on average. Max-product (circle) and TRMP (square) are
plotted for comparison. Reproduced by permission of Ò 2006 IEEE.

This shows that censored message passing can provide significant communication savings
together with near-optimal performance. In addition, we have found examples in which
this algorithm yields better performance than one without message censoring. We con-
jecture this is related to the so-called ‘rumor propagation’ behavior of algorithms such as
sum-product in which the repeated propagation of messages around loops leads to incor-
rect corroboration of hypotheses; by censoring messages, this corroboration is attenuated.
The communication-fusion performance tradeoff, a topic to which we will also return in
Section 9.5, is examined more thoroughly in the next section.

9.4.2 Trading Off Accuracy for Bits in Particle-Based Messaging

The NBP algorithm for inference in graphical models involves exchanging particle-based
representations of messages between nodes of the graph. When these nodes correspond
to separate sensors in a network, this raises a number of questions, including (a) how
does one efficiently represent and transmit these messages; and (b) how many particles
are required – i.e., how can one decide what level of accuracy is required to represent
the true, continuous message, and how can one send particles that provide that level of
accuracy?

The heart of the first question is the following. We would like to transmit a probability
distribution q(x) from one sensor to another, where q(x) is represented by a collection of
particles {xi} which can be viewed as a set of i.i.d. samples from q(x). Although this may
seem to be a standard problem in communications and information theory, there is a key
distinction – we have no interest in preserving the order of the samples, nor even truly in the
accuracy of the transmission of those individual particles; our interest is only in obtaining
an accurate reconstruction of q(x) at the receiver. The fact that the set representation is
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Figure 9.5 Approximating a message (or density estimate) q(x) using a hierarchical, KD-
tree structure. The same hierarchical structure can also be used to encode the approximation,
providing a trade-off between bits and approximation error. Reproduced by permission of
Ò 2006 IEEE.

order-invariant immediately suggests communications protocols which could be used to
reduce the number of bits required.

For example, consider a one-dimensional distribution q(x), so that the xi are scalar
values. In this case, one canonical ordering of the samples is from smallest to largest. Both
sender and receiver can apply the knowledge that each subsequent particle will be larger
than the previous particle to save a considerable number of bits. Indeed, in this case the
optimal communications rate is defined not by the entropy of q(x) but by the entropy of
its order statistics, saving approximately a constant number of bits per sample (Ihler et al.
2004).

Another possible technique for encoding (either scalar or vector) particles to obtain
these savings is to employ the same KD-tree structure used in NBP to provide a multi-
resolution communications protocol (see Figure 9.5). Recall that a KD-tree provides a
hierarchical clustering of the particles {xi} into a binary tree structure, starting from a root
node (representing all the particles) and refined at each level by splitting the cluster into
two subsets, corresponding to the particles to the left and right of their median value along
one of the dimensions. We may also use this data structure to create a multi-resolution
representation of the distribution q(x) by creating simple density approximations to the
clusters at each node of the KD-tree.

These representations can then be used to trade off between message accuracy and the
representation cost of the message in bits. In particular, by selecting any cut through this
tree, we obtain a mixture approximation q̂(x) to the finest-scale distribution q(x). Moreover,
the tree structure allows us to efficiently estimate the KL-divergence between q(x) and any
of these approximations. We can also use the tree structure to obtain an efficient method
of transmitting the distribution at any particular resolution, by transmitting the mean and
variances of its parent and then applying the knowledge (also available at the receiver due
to the protocol used) that the left-child distribution will have a mean smaller than the parent
mean, and the right-child will have a mean that is larger. A simple predictive encoder can
be used to capture this information (for example, the left or right half of the Gaussian
distribution associated with the parent node). This allows the transmitter to easily compute
the cost, in bits, of sending any particular approximation.

The hierarchical structure of approximations within the KD-tree allows us to adaptively
trade off quality versus communications cost. For example, a maximum allowable message
distortion can be used to determine a specific cut through the tree (and corresponding
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Figure 9.6 Reducing communications via message approximation in the sensor localization
problem. Approximating each message using a single Gaussian can cause errors since multi-
modalities in the messages may be obscured, but using even a few components is typically
sufficient to accurately represent the information.

message approximation), which in turn leads to a protocol for efficiently communicating
that approximation. Conversely, a maximum allowable communications cost can be used
to determine the most accurate approximation whose representation cost is less than the
bound.

Figure 9.6 illustrates the performance of this method in the context of the sensor
localization problem. The messages and beliefs computed during localization can be multi-
modal, particularly at the initial stages of the algorithm when little information has been
exchanged. However, as the iterations of sum-product proceed, more sensor locations are
resolved and fewer messages consist of multi-modal distributions. As a result, an adaptive
algorithm for message communication often initially sends several mixture components,
but over time may require only coarse, single-mode distributions which require fewer bits
to communicate. Combining this behavior with the message censoring approach described
previously provides a sensor localization algorithm which is resource-aware, and trades off
the cost of communications with the quality and quantity of messages sent.

9.5 The Effects of Message Approximation

The previous section described a number of ways in which limited communications
resources can be conserved by allowing certain approximations or errors to occur in the
sum-product algorithm, whether from censoring (using the old version of a message in place
of a new one) or from explicitly approximating particle-based messages. However, the met-
ric we care most about is not the individual message quality, but rather the accuracy of the
final, fused estimates having used those approximate messages. The relationship between
message approximations and the ultimate errors in the estimated beliefs is examined in
detail in (Ihler et al. 2005a).

The analysis described in (Ihler et al. 2005a) considers two possible metrics for quan-
tifying the difference between an exact and an approximate message. One of these metrics
is the Kullback-Leibler divergence (as used in Section 9.4.1); the other is a measure of the
‘dynamic range’ in this difference, equivalent to a norm on the log-messages. In particular,
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the dynamic range is

d
(
Mts, M̂ts

)
= sup

x,x′

(
Mts(x)

M̂ts(x)

M̂ts(x
′)

Mts(x ′)

)1/2

(9.10)

which can be shown to be equivalent (Ihler et al. 2005a), in the log-domain, to

log d
(
Mts, M̂ts

)
= inf

α
sup

x

| log α + log Mts(x) − log M̂ts(x)| (9.11)

The measure d(·) has several very important properties. First, as with KLD, it is insensitive
to the (irrelevant) scaling of entire messages. Indeed, log d(·) turns out to be a sup-norm
on the quotient space defined by this rescaling, and can be related to the usual sup-norm
between two log-messages. However, the most important property for our purposes is that
the effect of errors measured by the dynamic range can be bounded through each of the two
steps of the sum-product algorithm (9.5). Specifically, one can show that log d(·) behaves
subadditively with respect to the ‘product’ operation, so that the log of dynamic range
of the product of several approximate messages is at most the sum of the logs of the
dynamic ranges of the messages in the product. Furthermore, the dynamic range allows
one to establish a minimum rate for the mixing produced by the ‘sum’ operation, i.e., the
convolution of the product of incoming messages with the potential function relating one
node to another. This mixing behavior causes the sum operation to act as a contraction,
attenuating the total error in the outgoing message. Specifically, if one measures the strength
of a potential ψts as

S(ψts) = sup
a,b,c,d

sup
ψs,ψt

ψts(a, b)

ψt(a)ψs(b)

ψt (c)ψs(d)

ψts(c, d)

and denotes the product of incoming messages and local potential as M , one may show
that

d
(∑

ψtsM,
∑

ψtsM̂
)

≤
S(ψts)d

(
M, M̂

)
+ 1

S(ψts) + d
(
M, M̂

) . (9.12)

Combining (9.12) with the subadditivity relationship between M and its component
incoming messages provides bounds on how errors propagate at each iteration of the sum-
product algorithm. The behavior over multiple iterations can then be analyzed as well, and
is most easily visualized via a computation tree. Figure 9.7 shows the computation tree for
a simple graphical model with cycles; the messages that a particular node receives after
several iterations involve a large number of paths, many of which may include loops. In
this way, it is possible to compute a bound on the log dynamic range after any number of
iterations of sum-product. Interestingly, this analysis not only yields bounds on behavior
in the presence of message approximations, but also provides important results for sum-
product in general, such as the best conditions known to date for algorithm convergence,
and bounds on the distance between any two fixed points of sum-product.

Since the analysis just described yields bounds, there are cases in which the results it
provides can be conservative. As an alternative, we have also developed an approximation
(not a bound) built on the same principle as that used in roundoff noise analysis of digital
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Figure 9.7 (a) A small graphical model and (b) the associated computation tree with root
w. The messages received at node w after 3 iterations of loopy sum-product in the original
graph is equivalent to the messages received at the root node of the tree after 3 (or more)
iterations. Reproduced by permission of Ò 2006 IEEE.
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Figure 9.8 Maximum errors incurred as a function of the quantization error δ in a quantized
implementation of sum-product. The scatterplot indicates the maximum error measured in
the graph for each of 200 Monte Carlo runs, as compared to our upper bound (solid) and
approximation (dashed). Reproduced by permission of Ò 2006 IEEE.

filters, namely that at each point at which messages are approximated, the log dynamic
range error can be modeled as a white noise perturbation. This assumption can then be
used to provide easily computed approximations to the variance in message errors.

Figure 9.8 depicts the results of these analyses for two problems in which errors are
introduced to sum-product via message quantization. The first problem involves relatively
weak edge potentials (ones for which convergence of sum-product is guaranteed); the
second involves stronger edge potentials (typical of cases in which one would expect our
strict bounds to be conservative). These curves depict resulting error measures (bound,
stochastic approximation, and results of simulations) as functions of the quantization error
introduced at each iteration of sum-product. Note that even in the strong-potentials case



9.6. CONSTRAINED RESOURCES IN NETWORK FUSION 233

the approximation generally provides an accurate (and still slightly conservative) estimate
of resulting error. Most importantly, when these results are combined with methods for
balancing communication costs and message approximation error, we can create a complete
‘audit trail’ from bits used to message errors incurred and finally to resulting errors in the
final estimated beliefs.

9.6 Optimizing the Use of Constrained Resources
in Network Fusion

The developments in the preceding sections have provided a picture of how the message-
passing structure of inference algorithms on graphical models can provide the basis for
effective distributed network fusion algorithms. Of course this is not the entire story: in
most if not all sensor network applications, we must also deal with limitations on available
resources (for sensing, communication, and computation). Section 9.5 provided a first look
at the implications of these limitations in terms of the errors that arise from the fact that
messages cannot be sent perfectly and, in some cases, may not be sent at all. While that
analysis is important in understanding communication-performance tradeoffs, it does not
address the problem of making optimum use of the available resources so that the network,
as a whole, can achieve its overall (perhaps distributed) objectives.

Consideration of constrained resources highlights the fact that there are generally two
sides to communication in fusion networks. The first, which is the only one present in
standard message-passing algorithms, is information push: the transmitting node sends
bits it decides are important. The second is information pull : the receiving node lets the
transmitting node know what bits would be of most value. Furthermore, ‘information pull’
methods, in which a processor with access to a sufficient statistic for past observations
decides which resources to activate, may provide some advantage over ‘information push’
methods, in which local sensors with access to only their own observations decide when
to transmit their information.

In this section we take a look at two research directions that are aimed precisely at
viewing a sensor network as a resource-constrained team and developing strategies for
optimal coordinated use of the team’s resources. The first of the two directions focuses
on distributed target tracking. As we saw in Section 9.3.2, there are systematic methods
that allow us to transform data association and tracking problems into message-passing
algorithms for graphical models. Here, we generalize these ideas to include two additional
constraints. The first is simply that there is a power cost to sensing and computation. The
second issue is that, as can be seen in Figure 9.3, the graphical models that arise in data
association and tracking problems have some nodes that correspond to sensors but others
that correspond to other ‘hidden’ variables (regions, target states, etc.). Of course those
computations need to be performed at one of the sensing nodes, and this raises the question
of who takes the lead – i.e., to whom are the available measurements sent for fusion with the
current estimates of target states? However, there is also a power cost in communicating
which raises two of its own issues, both related to the fact that communications power
required increases with distance. The first is the obvious one, namely there is a distance-
related cost in transmitting raw measurements from sensor to leader. The second is more
involved but at least as important. Specifically, as a target moves, there are changes in
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which sensors are the best to task, and when this happens, the cost of communication also
requires that we consider changing the choice of leader, i.e. that we consider the problem
of handoff of responsibilities for maintenance of target state estimates. Of course there is
a cost for this, namely the cost of transmitting the current target information state – e.g.,
in particle form using the methods described in Section 9.4.2 – from the old leader to the
new. The development of a dynamic resource allocation method for balancing all of these
choices and objectives – track accuracy, power conservation, choices of nodes to task for
sensing and decisions on when and to whom to hand off leader responsibilities is the subject
of Section 9.6.1.

The methods of decentralized team theory provide a natural setting to investigate a push-
pull notion of self-organization as an optimal equilibrium strategy for communications-
constrained network fusion. This second line of inquiry, described in Section 9.6.2, takes as
the starting point the fact that there are distributed objectives and communication constraints
in a sensor network, and seeks to develop message-passing strategies to optimize those
objectives subject to those constraints. In so doing, the network addresses and achieves
self-organization, in which each node learns how to interpret the bits received (or perhaps
not received) from other nodes and how to generate bits that are most informative to
other nodes. Moreover, the iterative computation we describe to find such equilibria is
itself a distributed message-passing algorithm to be executed ‘offline’ (i.e., before actual
measurements are processed): at each stage in the iteration, one node adjusts its local
decision rule (for subsequent ‘online’ processing) based on incoming messages from its
neighbors and, in turn, sends adjusted outgoing messages to its neighbors. Some of the
offline messages received by each node define, in the context of its local objectives (e.g.,
target detection, cost of communication), a statistical model for the information it may
receive online (e.g., ‘what do my neighbor’s bits mean to me?’), while the other offline
messages define, in the context of all other nodes’ objectives, the value of information it
may transmit online (e.g., ‘what do my bits mean to my neighbors, their neighbors, and so
on?’). The result of these offline iterations can be viewed as a fusion protocol to maintain
online decision-making performance in the face of anticipated network resource constraints,
emphasizing a critical point for the practitioner: if such self-organization is expected to be
done in situ, as is often discussed for ad-hoc sensor networks, it must of necessity expend
only a small fraction of the available power at each node.

9.6.1 Resource Management for Object Tracking in Sensor Networks

Here, we consider an object tracking problem in which we seek to tradeoff estimation
performance with energy consumed by sensing and communication. We approach the trade
off between these two quantities by maximizing estimation performance subject to a con-
straint on energy cost, or the dual of this, i.e., minimize energy cost subject to a constraint
on estimation performance. We assign to each operation (sensing, communication, etc.) an
energy cost, and then we seek to develop a mechanism which will allow us to choose only
those actions for which the resulting estimation gain received outweighs the energy cost
incurred. We assume that sensing and communication are orders of magnitude more costly
than computation, and hence that the cost of computation can be neglected.

In order to operate in this regime, we must be able to calculate both the benefit of a
particular action in terms of estimation performance, and the corresponding energy cost,



9.6. CONSTRAINED RESOURCES IN NETWORK FUSION 235

without consuming significant communication energy. Indeed, needing to communicate in
order to determine how best to use our communication resources would represent quite a
conundrum. This requirement effectively dictates that we should maintain the PDF for the
object under track at a single node in the network at each time step, as proposed by previous
authors (e.g., (Jones et al. 2002; Liu et al. 2003)). By ensuring that all of the information
which comprises this PDF is located at a single node, we can calculate future expectations
without expending energy. In the context of single object tracking, we refer to this node as
the leader node. Of course, the leader node may change at each time step; this is yet another
action over which we plan, taking into account the corresponding communication cost.

Entropy is a measure of uncertainty which has been applied to a wide variety of contexts
including sensor management (e.g., (Chu et al. 2002; Zhao et al. 2002)). We measure the
reward of obtaining a particular measurement, yk , as the reduction in entropy that it yields
in the quantity being estimated, xk (e.g. the position and velocity of the object under track).
This can be expressed equivalently as the mutual information between the observation and
the quantity being estimated, conditioned on all previous measurements, y0:k−1:

I (xk; yk|y0:k−1) = H(xk|y0:k−1) − H(xk|y0:k)

or, equivalently, the Kullback-Leibler divergence between the prior and posterior distribu-
tions of the quantity being estimated, D(p(xk|y0:k)||p(xk|y0:k−1)).

We assume that the energy cost of each operation is known by the leader node. The
specification of these abstract energy costs allows great flexibility. For example, one could
choose to implement a protocol in which the tasked sensor sends the measurement, after
which the leader node confirms reception. If confirmation is not received, then the tasked
sensor could re-send the measurement. The communication costs could easily incorporate
the expected cost of operating this protocol. Similarly, one could design a protocol in
which the information is sent once. One could then discount the expected information
reward by the probability that the measurement will never be received. One could also
envision a system which adaptively selects online between these two protocols, trading off
the benefits and costs of each.

When one makes resource management decisions for sensor network object tracking,
one is obliged to consider not only the instantaneous benefit of decisions at the current
time, but also the long-term impact of the decisions. For example, suppose that one has the
choice of either immediately obtaining information about an object from a distant sensor
for which communication comes at a high price, or to wait a few time steps and then
obtain essentially the same information from a nearer sensor for which communication
is comparatively cheap. Clearly, the knowledge of future opportunities should impact the
current decisions. Furthermore, each time one makes a decision and receives the resulting
measurements, one then has the opportunity to alter subsequent decisions.

The optimal solution of this category of problem is a dynamic program (e.g., (Bertsekas
2000)). Unfortunately, since our observations are noise-corrupted measurements of portions
of the quantities we are estimating (e.g., position and velocity of the object being tracked),
the decision state of the dynamic program will incorporate the conditional PDF of these
quantities, p(xk|y0:k−1), a structure similar to a partially observed Markov decision process.
The complexity of this state space necessitates the use of suboptimal solution methods; the
optimal method requires infinite computation and storage, and direct approximations thereof
have exponential complexity.
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A common sub-optimal control method used for situations involving partially observed
processes is Open Loop Feedback Control (OLFC). In this scheme, at each time the con-
troller constructs a plan of which action to choose at each step in the planning horizon.
In doing so, the controller does not anticipate availability of any new information while
the plan is being executed. After executing one or more steps of that plan, the controller
then constructs a new plan which incorporates the new information received in the interim.
We utilize OLFC in this way, at each step planning over the following N steps in time
(referred to as a rolling horizon).

Greedy heuristics have been shown to perform well in many object-tracking applica-
tions. These methods select actions which maximize the instantaneous reward (e.g. the
largest reduction in entropy), paying no regard to future opportunities. Indeed, if estimation
performance as measured by mutual information is the only criterion, then one can prove
that, in open loop, greedy methods produce a result with reward no less than one half that
of the optimal solution (see Krause and Guestrin (2005); Williams et al. (2006a)). In the
context of sensor networks this situation changes. If we operate the same greedy algorithm
paying attention only to short-term information gain, the energy consumption may be arbi-
trarily high. Conversely, if we operate the greedy algorithm paying attention only to the
immediate communication cost, the estimation performance may be arbitrarily poor. How
one should modify this heuristic in order to optimally trade off these competing objectives
is an open question.

We formulate the tradeoff between estimation performance and energy consumption
through a constrained dynamic program, similarly to (Castañon 1997), where we either
maximize estimation performance subject to a constraint on energy usage, or minimize
energy usage subject to a constraint on estimation performance. Denoting the control policy
for the next N steps as π = {µk, . . . , µk+N−1}, and the decision state (i.e., the combination
of conditional PDF of object state and the previous leader node) as Xk the underlying
dynamic program becomes:

min
π

E

[
k+N−1∑

i=k

g(Xi , µi(Xi ))

]

s.t. E

[
k+N−1∑

i=k

G(Xi , µi(Xi ))

]
≤ M (9.13)

In the first formulation, which optimizes estimation performance subject to a constraint on
energy cost, we set the per-stage cost to be

g(Xk, uk) = −I (xk; y
uk

k |Xk) (9.14)

so that the sum of the rewards is the total reduction in entropy over the planning horizon. We
set the per-stage constraint contribution G(Xk, uk) to be the energy cost of implementing the
decisions uk . In the dual formulation, which minimizes energy cost subject to a constraint
on estimation performance, these two quantities are reversed.

By approaching the constrained optimization using a Lagrangian relaxation (a common
approximation for integer programming problems), we find a principled method for trad-
ing off competing objectives using algorithms based on an extension of the basic greedy
heuristic. Our approach exploits the additive structure of both information rewards (e.g.,
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due to the additive decomposition of mutual information) and energy costs in order to find
a per-stage cost of the form:

g(Xk, uk, λ) = g(Xk, uk) + λG(Xk, uk) (9.15)

This can be motivated by applying a Lagrangian relaxation, defining the dual function:

JD
k (Xk, λ) = min

π
E

[ k+N−1∑
i=k

g(Xi , µi(Xi )) + λ

( k+N−1∑
i=k

G(Xi , µi(Xi )) − M

)]
(9.16)

and solving the dual optimization problem involving this function:

JL
k (Xk) = max

λ≥0
JD

k (Xkλ) (9.17)

We note that the dual function JD
k (Xk, λ) takes the form of an unconstrained dynamic

program with a modified per-stage cost, defined in (9.15). This motivates the use of an
algorithm that is greedy with respect to this augmented cost, in which we choose to utilize
a sensor only if the expected information of the sensor measurement outweighs the cost of
obtaining the measurement. For example, suppose we want to select a subset of sensors to
activate at a particular time step during operation. We proceed with greedy selection using
this augmented cost, activating the sensor with the smallest augmented cost. When either
all sensors are active, or all augmented costs are positive (indicating that, conditioned on
the observations already chosen, the additional benefit of any remaining observation does
not outweigh the cost of obtaining it), we terminate with the current subset.

In the context of sensor networks, in which communication is a primary source of energy
expenditure, the cost of obtaining an observation is dependent upon the current choice of
leader node, to which the sensor taking the measurement must transmit the observation.
Conditioned on a particular choice of leader node trajectory (i.e., a choice of which node
to select as leader at each time step in the planning horizon), the subset selection method
above provides a means of selecting which sensors to activate at each time. However, in
online operation, we simultaneously choose which sensors to activate, and which node to
activate as leader. Our approach to this problem is a hierarchical decomposition, in which
we consider different choices of leader node at each time, and then conditioned on these
choices, we use the greedy subset selection. Obviously we cannot plan over all possible
trajectories of leader node, so we utilize a scheme which adaptively prunes the search tree,
at each level comparing the sequences ending with a particular node as leader and keeping
the sequence with highest reward. A detailed description of our scheme can be found in
Williams et al. (2005, 2006b).

The final question which must be addressed is how to choose the value of the Lagrange
multiplier. This could be performed using a number of methods such as a line search
or a subgradient search. However, in practice, we simply update the value once at each
iteration of the algorithm depending on whether the constraint had slack or was exceeded.
If the constraint was exceeded, then the Lagrange multiplier is increased (either additively
or multiplicatively by a constant amount); if the constraint had slack, then the value is
decreased. This provides an online approximation of a subgradient search.

In essence, the algorithm described performs long-term planning over trajectories of
leader node and Lagrange multiplier value, and short-term planning over which subset
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Figure 9.9 Position entropy versus communication cost for a source tracking problem
using a network of 20 acoustic sensors, using several different tracking algorithms. Each
ellipse shows the mean (center) and covariance of the communication cost and position
entropy, obtained by averaging over 100 Monte-Carlo runs. The algorithms considered are:
dynamic programming method with communication constraint (DP CC) and information
constraint (DP IC) with different planning horizon lengths (N); and two greedy methods
in which the leader node at each iteration is selected as the node with either the largest
mutual information (greedy MI) or the smallest expected square distance to the object (min
expect dist).

of sensors to activate conditioned on the long-term choice of leader node and Lagrange
multiplier. In this way, we gain the efficiency of the greedy heuristic while still capturing
the trade-off between the competing quantities of estimation performance and energy cost.

As an example, Figure 9.9 illustrates the performance of our method in which we track
an object moving through a network of 20 randomly-placed acoustic sensors. Figure 9.9
demonstrates that the communication-constrained formulation provides a way of controlling
sensor selection and leader node which reduces the communication cost and improves
estimation performance substantially over the myopic single-sensor methods, which at each
time activate and select as leader node the sensor with the measurement producing the
largest expected reduction in entropy. The information-constrained formulation allows for
an additional saving in communication cost while meeting an estimation criterion wherever
possible.

The previous discussion has been in the context of tracking a single object. If multiple
objects are moving independently and are never observed by the same sensor, then the
algorithm can be executed in parallel for each object. If objects are close together and
are observed by the same sensor, then the joint observation process induces conditional
dependency between the objects. In this situation, one could choose to store the joint pdf
of the two objects at a single node, utilizing a single instance of the algorithm previously
described for joint estimation and planning for the two objects. Thereafter, at each step one
could consider the control option to discard the joint representation in favor of two marginal
pdfs, evaluating the information loss which would result against the communication saving
it would yield. Alternatively, one could utilize a distributed representation such as that
described in Section 9.3 with some prediction of the communication costs that will be
necessary.
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9.6.2 Distributed Inference with Severe Communication Constraints

The previous analyses demonstrate fundamental tradeoffs between achievable fusion perfor-
mance and available communication resources in distributed sensor networks. The results in
Section 9.4, in particular, establish that distributed message-passing algorithms for graph-
ical models are robust to substantial message errors, but also suggest performance may
be unsatisfactory as communication resources become severely constrained. For example,
Figure 9.4 illustrates a catastrophic failure in data association performance when the censor-
ing thresholds result in a very low amount of communication. Also observe that the upper
bound and approximation curves in Figure 9.8 tend to a common positive slope as per-link
quantization error becomes arbitrarily large, implying very low link capacities (i.e., reliable
communication of only a few bits per desired estimate) which impact performance. That
there are limits to the demonstrated robustness of conventional message-passing algorithms
is not surprising, considering they are originally derived assuming ideal communications.
In this subsection, we explicitly model the presence of low-rate, unreliable communica-
tion links and examine the extent to which message-passing algorithms other than those
discussed in Section 9.2 can mitigate the potential loss in fusion performance.

Problem formulation

We begin with a graphical model (as described in Section 9.2) and focus on the fusion
objective of estimating a discrete state process X = {Xs, s ∈ V }, based on a noisy mea-
surement process Y = {Ys, s ∈ V }. Our goal is to design a distributed fusion approach
which minimizes the expected number of errors across all inference nodes, X (i.e., bit-
error-rate in the case of binary state variables). Specifically, we denote by � the set of
all functions γ that map the support of Y into the support of X, we seek the estimator
X̂ = γ ∗(Y ) such that

J (γ ∗) = min
γ∈�

E[c(γ (Y ), X)]︸ ︷︷ ︸
≡J (γ )

. (9.18)

Here, so that J indeed measures the expected number of nodes in error, the numeric ‘cost’
c(x̂, x) associated with each possible realization of the joint process (X̂, X) is taken to be

c(x̂, x) =
∑
s∈V

c(x̂s , xs) where, for each node s, c(x̂s , xs) =
{

0 , x̂s = xs

1 , x̂s �= xs
.

(9.19)
Classical decision theory (Van Trees 1968) states that the estimator satisfying (9.18)

for the costs in (9.19) is equivalent to finding the mode of every state variable’s marginal
distribution conditioned on all measurements i.e., per realization Y = y, compute x̂ =
{x̂s , s ∈ V } via

x̂s = arg max
xs

p(xs |y), ∀ s ∈ V. (9.20)

Indeed, as discussed in previous sections, the goal of sum-product algorithms is to obtain
exactly these marginal distributions p(xs |y) at every node s ∈ V . It follows that the realiza-
tion of each optimal estimate x̂ = γ ∗(y) requires total communication overhead of at least
2|E| real-valued messages. In contrast, we embark upon realizing each estimate x̂ = γ (y)

under the restriction that total communication overhead is at most |E| finite-alphabet mes-
sages, or symbols (e.g., just one bit per edge). Such severe constraints clearly render the
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optimal estimator in (9.20) infeasible, even for tree-structured graphical models, shifting
the purpose of our problem formulation to finding a feasible (yet effective) estimator.

We view restrictions on communication as placing explicit constraints on the function
space � in (9.18). Specifically, let the network topology be defined by a directed acyclic
graph N = (V , D). Assume each edge (t, s) ∈ D represents a point-to-point communication
link from node t to node s with known finite capacity (in bits per estimate), denoting by

π(s) = {t ∈ V, (t, s) ∈ D} and χ(s) = {t ∈ V, (s, t) ∈ D}

the parents and children, respectively, of each node s. Sources of unreliable communica-
tion (e.g., multicast interference, dropped packets) at node s are modeled by a discrete-
memoryless channel p(zs |xs, mπ(s)→s): here, process Zs denotes the information received
by node s given the symbols mπ(s)→s = {mt→s , t ∈ π(s)} were transmitted to node s (see
Figure 9.10). Moreover, fusion objectives with costly or selective (i.e.,censored) commu-
nication can be captured by augmenting the cost function c(x̂, x) to also depend on all
transmitted symbols m = {ms→t , (s, t) ∈ D}. For example, suppose the alphabet of each
symbol ms→t includes a ‘no-send’ option and a numeric cost c(ms) equals the number of
such symbols ms = {ms→t , t ∈ χ(s)} selected by node s that do not exercise this option:
then, choosing

c(m, x̂, x) =
∑
s∈V

c(x̂s, xs) + λc(ms), for a specified constant λ ≥ 0, (9.21)

results in J measuring a (λ-weighted) sum of the node-error-rate and link-use-rate.
Altogether, denoting by �s the set of functions γs at node s by which any particular

input (ys, zs) maps to an output (ms, x̂s), we seek the collection γ ∗ = {γ ∗
s , s ∈ V } such

that
J (γ ∗) = min

γ∈�
J (γ ) subject to γ ∈ �(N) = �1 × · · · × �|V |. (9.22)

By definition, any collection of local decision processes (Ms, X̂s) = γs(Ys, Zs) satisfying
(9.22) will be both feasible and achieve the minimum loss in fusion performance. This
formulation consolidates a number of problem variants studied in decentralized detection

1 2 3

4 5

6 7 8 9

10 11 12

1 2 3

4 5

6 7 8 9

10 11 12

channel

ys

zs x̂ s

ms ...... ss

node

symbols froms
parent p (s)

symbols to
children c (s)

Figure 9.10 The two types of graphs in our formulation: (a) an undirected graph G under-
lying a probabilistic graphical model, and (b) a directed acyclic graph N , defining the
parents π(s) and children χ(s) of each node s in a network topology, along with (c) the
implied fusion rule at each node, invoked in succession from parent-less nodes to child-less
nodes in N .
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(Tsitsiklis 1993; Varshney 1997; Viswanathan and Varshney 1997), including the allowance
of an arbitrary network topology (Pete et al. 1996) and selective or unreliable communi-
cation (Chen et al. 2004; Papastavrou and Athans 1986; Pothiawala 1989; Rago et al.
1996).

Summary of algorithmic solutions

An important implication of our problem formulation is the distinction between the sensor
network’s online algorithm, or the implementation of any feasible fusion strategy γ ∈
�(N), and offline algorithm, or the solution to the constrained optimization problem in
(9.22). In particular, when online estimation is severely resource-constrained, the offline
optimization by which performance loss can be mitigated introduces an additional tax on
network resources. Given we anticipate intermittent reorganization by the network to stay
connected (due to e.g., node dropouts, link failures), we must also anticipate the incentive
for intermittent re-optimization. Hence, unless the offline algorithm itself admits an efficient
distributed implementation, little hope exists for preserving satisfactory fusion performance
without also rapidly diminishing the resources available for actual online measurement
processing.

As highlighted earlier, the constrained optimization problem in (9.22) falls within the
class of (discrete) decentralized decision problems, for which optimal solution is known to
be NP-hard (Tsitsiklis and Athans 1985). Also known is an approximation to the problem,
called person-by-person optimality in team theory (Marschak and Radner 1972), for which
analytical progress can be made. It applies to our formulation provided the channel noise at
every node is independent of the channel noise at all other nodes as well as the observation
noise at all nodes (Kreidl and Willsky 2006a). The resulting online strategy is essentially
equivalent to a collection of elementary Bayesian detectors, taking the form

γ ∗
s (Ys, Zs) = arg min

(ms ,x̂s )

∑
xs

θ∗
s (ms, x̂s, xs;Zs)p(Ys |xs) with probability one, (9.23)

where parameters θ∗ = {θ∗
s , s ∈ V } (reducing to a set of likelihood-ratio thresholds in the

case of binary state variables) are globally coupled through a nonlinear fixed-point equation,

θs = fs(θV \s) for s ∈ V , (9.24)

to be solved offline (Kreidl and Willsky 2006a,b; Tang et al. 1991; Tsitsiklis 1993). More-
over, given any initial parameters θ 0, iterating (9.24) in a node-by-node fashion (i.e.,
Gauss-Seidel iterations) guarantees a parameter sequence {θ k} for which the associated
cost sequence {J (γ k)} is convergent. In general, however, a distributed implementation of
this offline algorithm (i) assumes all nodes are initialized with common global knowledge
i.e., probabilities p(x), costs c(m, x̂, x) and channels {p(zs |xs, mπ(s)→s), s ∈ V }; and (ii)
requires computation/communication overhead that scales exponentially with the number
of nodes.

Provided the directed graph N is tree-structured (as in Figure 9.10(b)), it can be shown
(Kreidl and Willsky 2006a,b; Tang et al. 1993) that (9.24) specializes to the form

Ps→χ(s) = f 1
s (θs, Pπ(s)→s)

θs = f 2
s (Pπ(s)→s, Cχ(s)→s)

Cs→π(s) = f 3
s (θs, Pπ(s)→s, Cχ(s)→s)

for s ∈ V . (9.25)
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Here, for each link (s, t) in N , the forward messages Ps→t (ms→t |xs) represent a like-
lihood function, giving global context to the symbol ms→t from the receiving node’s
perspective, while the backward messages Ct→s(ms→t , xs) represent an expected cost-to-go
function, giving global context to the symbol ms→t from the transmitting node’s perspective.
Observe that parameters θ are still globally coupled, but this coupling is now expressed
only implicitly through the forward and backward message recursions. Indeed, conver-
gence of the sequence {J (γ k)} is guaranteed by iterating the equations of (9.25) in any
order corresponding to repeated forward-backward sweeps through the network (Kreidl and
Willsky 2006a,b). Moreover, a distributed implementation of this offline message-passing
algorithm (i) assumes each node s is initialized with local knowledge i.e., probabilities
p(xπ(s), xs), costs c(ms, x̂s, xs) and channel p(zs |xs, mπ(s)→s); and (ii) requires compu-
tation/communication overhead that scales linearly with the number of nodes. Note that
this local message-passing algorithm can always be applied to arbitrary directed acyclic
networks, but convergence is then in question.

An illustrative example

Consider the following instance of the problem described above, involving only three main
parameters for ease of illustration. The joint distribution p(x, y) is defined on the graph
G shown in Figure 9.10(a): each node’s state variable xs and measurement variable ys

is binary-valued and (scalar) real-valued, respectively, where potential functions are taken
to be

ψst (xs, xt ) =
{

η , xs = xt

1 − η , xs �= xt
and ψs(xs, ys) = exp

(
− (ys − (xs − 0.5))2

2σ 2

)
.

The parameter η ∈ (0, 1) captures the correlation between neighboring states (i.e., negative
or positive for η < 0.5 or η > 0.5, respectively) while the parameter σ ∈ (0,∞) captures
the measurement accuracy at every node. The network topology is the graph N shown
in Figure 9.10(b) with each link taken to be an independent and identically distributed
binary erasure channel together with a (reliable) ‘no-send’ option: each channel model is
p(zs |xs, mπ(s)→s) = ∏

t∈π(s) p(zt→s |mt→s) where

p(zt→s |mt→s) =


1 − ε , zt→s = mt→s when mt→s ∈ {0, 1}
ε , zt→s = ∅ when mt→s ∈ {0, 1}
1 , zt→s = ∅ when mt→s = ∅
0 , otherwise

.

The parameter ε ∈ [0, 1] captures the reliability of the unit-rate communication network
(i.e., perfect for ε = 0), and the correct symbol is always received in the absence of an
erasure.

We consider the cost function c(m, x̂, x) defined in (9.21), varying parameter λ ≥ 0 in
small increments (of size 3 × 10−4) and repeatedly applying the offline message-passing
algorithm until the sequence {J (γ k)} converges (using a tolerance of 10−3). The initial
parameters θ0

s at each node s are chosen to partition the local measurement space into
6|χ(s)| intervals, assigning

(i) decision x̂s = ms→t = 0 to the interval (−∞, (1 − 3|χ(s)|)σ−1)
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Figure 9.11 Optimized tradeoff curves, assuming the graphs shown in Figure 9.10, as a
function of link unreliability (i.e., parameter ε) for (a) nominal state correlation and mea-
surement noise, (b) low state correlation but nominal measurement noise, and (c) nominal
state correlation but low measurement noise. Each curve is generated by incrementing
parameter λ in (9.21) from zero, meaning online communication is cost-free, to a value in
which the offline message-passing algorithm converges to the myopic strategy (i.e., each
node acting as if in isolation), meaning any online communication is too costly relative
to the potential improvement in node-error-rate performance. The link-use-rate is never at
its maximum and the node-error-rate never exceeds that of the myopic strategy: that is,
the optimized team strategy consistently regulates its exploitation of the ‘no-send’ option
(i.e., ‘no news is news,’ even with an imperfect communication medium) and gracefully
avoids catastrophic performance failure. Also shown in each plot (by the horizontal dotted
lines) is a Monte-Carlo estimate (plus/minus one standard deviation) of the unconstrained
optimal node-error-rate: observe that the offline message-passing algorithm can recover up
to (a) 37%, (b) 40% and (c) 43% of the fusion performance lost by the myopic strategy.

(ii) decision x̂s = ms→t = 1 to the interval (σ−1(3|χ(s)| − 1),∞), and

(iii) all remaining decisions to equally-spaced sub-intervals of [σ−1(1 − 3|χ(s)|),
(3|χ(s)| − 1)σ−1].

Results are shown in Figure 9.11 and indicate that the optimized team strategy consistently
hedges against all sources of uncertainty as we weigh between fusion inaccuracy (i.e.,
node-error-rate) and online communication overhead (i.e., link-use-rate). Table 9.1 indicates
that offline convergence occurs in roughly five iterations, each such iteration assuming
the reliable transmission of 12|D| = 132 real numbers. Thus, while satisfactory fusion
performance is achievable given online communication can be at most |D| = 11 bits (per
estimate), it depends upon offline communication on the order of 660 real-valued messages
(per reorganization).

9.7 Conclusion

In this chapter we have described a collection of research results and directions that build
on the evocative connection between distributed fusion in sensor networks and message-
passing algorithms in graphical models. Through two example applications (self-localization
and data association/target tracking), we have shown how network fusion problems can be
mapped to graphical models, allowing one, in principle to apply graphical model inference
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Table 9.1 Overhead of message-passing algorithm to generate the curves of
Figure 9.11.

Link Unreliability Lowest Myopic Weight Offline Iteration Count
ε (a) (b) (c) (a) (b) (c)

0.0 0.1368 0.0774 0.1056 4.5 ± 0.74 4.4 ± 0.71 4.7 ± 0.65
0.3 0.0957 0.0543 0.0762 4.3 ± 0.74 4.2 ± 0.71 4.1 ± 0.29
0.6 0.0549 0.0312 0.0462 3.9 ± 0.89 3.9 ± 0.78 4.0 ± 0.08

‘Lowest Myopic Weight’ refers to the value of parameter λ at which convergence to the myopic
strategy (always in exactly two iterations) first occurs; and ‘Offline Iteration Count’ refers to the
average (plus/minus one standard deviation) number of iterations to convergence, taken over only
the samples of λ below the lowest myopic weight. Note that, all other things being equal, the
Lowest Myopic Weight is inversely related to Link Unreliability: with respect to achievable fusion
accuracy, the offline algorithm captures the diminishing marginal value of online communication
as link reliability degrades. Two other trends are also worth noting, but whether they apply
beyond these particular examples are open questions: (i) relative to the nominal conditions (i.e.,
column (a)), lower state correlation or lower measurement noise (i.e., column (b) or column (c),
respectively) also diminish the value of online communication; and (ii) the on-average rate of
offline convergence increases as (online) link reliability degrades.

methods to sensor network fusion problems. Not unexpectedly, of course, there are issues
of critical importance in sensor networks – in particular related to constraints on available
power (for communication and/or sensing)-that require analysis beyond that found in the
graphical model literature, and we have presented two lines of inquiry aimed at addressing
these issues.

The first involved the idea of simply approximating or ‘censoring’ (i.e., not sending)
messages in graphical model inference procedures. In the context of data association we
described how censoring can lead to desirable adaptivity in network messaging (‘only say
something when you have something new to say’), and experiments show a sharp threshold
in performance; i.e., there appear to exist critical communication rates in data association.
Above this rate, performance varies only gradually with reduction in communication, but at
this critical value, performance degrades precipitously. In the context of self-localization,
in which messages represent ‘particles’ we described a framework for trading off bits in
communicating these particle-based messages against overall fusion performance. Interest-
ingly, our methodology for mapping message approximations to fusion performance has
independent value in the context of graphical models, as it provides error bounds and
convergence results for belief propagation algorithms.

The second line of inquiry involved the development of methods for network fusion that
optimize overall fusion performance taking into account, from the start, that there are costs
or constraints on power consumption or communication. In the context of target tracking we
described the fact that communication costs are incurred for two distinct reasons: Commu-
nicating sensed measurements to a leader or fusion node and the communication required
to hand off leader responsibility as an object moves through a sensor field. Combining
these with the power cost of sensing, we have described a framework for dynamically opti-
mizing the tradeoff between power consumption and tracking accuracy. The second part of
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our work on optimizing resource utilization formulated the problem of designing message-
passing strategies to achieve overall network fusion objectives subject to constraints on
node-to-node communication. As we discussed, the resulting message-passing strategy for
each not only takes into account power concerns but also the objectives of those receiving
the messages that are transmitted, capturing not only information-push from transmitter to
receiver but also information-pull from receiver to transmitter. Importantly, the algorithms
to achieve this coordinated team behavior have message-passing structure themselves and
point to the fact that the process of network organization itself consumes some of the
resources that the resulting strategies aim to conserve.

While the results in this chapter provide important components for a methodology
for distributed fusion in sensor networks, they are far closer to the start than the end of
the story, and there are many important lines of research that remain to be considered,
some of which are being pursued by our team. The first of these involves the idea of
developing different ways of organizing message passing that may be more appropriate for
sensor networks. For example, one can imagine operational structures in which ‘seed’ nodes
initiate messaging, propagating information radially outward, fusing information around
these radially expanding regions as they meet, and then propagating information back
inward toward the seed nodes. Such an algorithmic structure allows great flexibility (e.g.,
one can imagine allowing any sensor to act as a seed if it measures something of interest)
and also leads to new algorithms with great promise for inference on graphical models more
generally. We refer the reader to (Johnson and Willsky 2006, in review) for a first treatment
of this approach. Also, the computation tree interpretation of the sum-product algorithm
allows one to clearly see the computations that sum-product fails to make that a truly optimal
algorithm would – computations that in essence take into account the dependencies between
messages that sum-product neglects (Johnson et al. 2005). This suggests another line of
research that focuses on one of the significant differences between standard graphical model
inference problems and sensor networks. In particular, when viewed as a sensor network
fusion algorithm sum-product has the property that it makes very little use of local node
memory and computational power (all that is remembered from step to step are the most
recent messages, and all that are computed are essentially the sum-product computations).
Can we develop algorithms that use more memory and perform more local computation
and that as a result reduce the number of messages that need to be sent? Several ideas
along these lines are currently under investigation. Also, a standard feature in wireless
networks is the inclusion of header bits that provide information on the path a message
has taken from initiator to receiver. Can we take advantage of such header bits to capture
dependencies between messages so that they can then be used to fuse messages in a manner
that is not as naı̈ve as assuming conditional independence? Of course using such header
bits for what we term informational pedigree means that there are fewer bits available for
the actual message, so that the message quantization error will be larger. How does the
error incurred by such an increased quantization error compare to the additional fusion
accuracy provided by providing these pedigree bits? Current research building on what we
have presented here, is addressing this question.

Numerous other directions for further work also suggest themselves, such as allowing
nodes to actively request information from other nodes. Indeed, if this is part of the self-
organizing protocol of the sensor network, then each node not only will be able to extract
information from such a request but also from the absence of such a request (i.e., ‘no



246 GRAPHICAL MODELS AND FUSION

news is news’). Also, while some of the work in Section 9.6 can accommodate imperfect
communication channels, there is a real need to expand the development to allow for more
serious disruptions-e.g., the failure of a node, which requires that message-passing strategies
be robust or adaptable to such failures. This touches on an even richer class of problems
that arise when we allow the possibility that the structure of the network; i.e., the messaging
graph – can be different from the statistical graph underlying the inference problem being
solved by the network. As questions such as these make clear, there is much more to be
done in an area that cuts across the areas of signal processing, estimation, communication,
computation, and optimization in new and fascinating ways.
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Randomized Cooperative
Transmission in Large-Scale
Sensor Networks

Birsen Sirkeci-Mergen and Anna Scaglione

10.1 Introduction

In wireless ad-hoc networks, communication is prone to strong signal attenuation due to
channel fading and interference that is caused by multiple uncoordinated users. Wireless
sensor networks (WSNs), a special case of wireless ad-hoc networks, have additional design
constraints such as power efficiency and limited processing capability at the sensors. Hence,
any protocol designed for WSNs should work with limited resources (power efficiency),
should be robust to number of sensors (scalability), and should deal with issues of wireless
medium.

In addition to data acquisition, a WSN has three essential tasks: (i) data compression
(source coding problem); (ii) data processing and computation (signal processing prob-
lem); and (iii) data communication (channel coding problem). The problem of optimally
performing all these tasks over multiple sensors is quite challenging. In the literature, the
solutions that have emerged so far can be classified based on the options to perform any
combination of the tasks jointly or separately. In either scenario, there exist trade-offs
between different tasks. For example, consider the sensing and communication tasks where
the sensors report their data directly to a fusion center. In this case, there is a trade-off
between the network sensing range, which grows in the order of the network radius, and

Wireless Sensor Networks: Signal Processing and Communications Perspectives A. Swami, Q. Zhao, Y.-W. Hong and L. Tong
Ò 2007 John Wiley & Sons, Ltd
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the network communication range, which decreases proportionally to R−α , with α being
the path loss exponent. In order to overcome this obvious limitation, multi-hop ad-hoc
networking has been considered for transporting the sensor data. Unfortunately, multi-hop
wireless networks do not scale (Gupta and Kumar 2000) and for this reason some have
come to question the practical value of densely populated networks of low cost sensor
devices (e.g. Smartdust vision (Warneke et al. 2001)). Other researchers have pointed out
that the theoretical results in (Gupta and Kumar 2000) do not strictly apply, since sensors
record large amounts of redundant and idle data. Furthermore, the information in most
cases does not need to be shuttled in a point-to-point fashion. On the contrary, motivated
by the observation that in a wireless network transmissions are overheard by several unin-
tended recipients, a recent direction that has gained momentum is cooperative transmission.
Cooperative transmission is a cross-layer approach bridging the network and physical layers
with the objective of forwarding information that is available at multiple terminals more
reliably.

In this chapter, we study the problem of broadcasting sensed information to a faraway
fusion center or throughout the entire network leveraging on all the available wireless
transmission resources. More specifically, the chapter is composed of two main parts. In
the first part we introduce a class of cooperative transmission protocols that are decentral-
ized and we derive their performance. The key characteristic of a decentralized cooperative
protocol, compared to a centralized solution, is the randomization of the code construc-
tion. The ensuing performance analysis helps identify which design features are effective
in providing diversity and coding gains comparable to those of a centralized assignment
and which ones are not. The second part of the chapter analyzes the network dynamics
when multiple groups (levels) of cooperative relays pass a message in succession, much
like in a generalized version of the multi-hop model in which information is relayed by
cooperative links. Using a continuum network model we obtain closed-form expressions
that are accurate when the network density is high. We show that there exists a phase
transition in the network behavior and if the power density is above a fixed threshold, a
succession of cooperative transmissions can reach reliably to all network nodes.

10.2 Transmit Cooperation in Sensor Networks

Cooperative communication (Laneman and Wornell 2003; Stefanov and Erkip 2004) dif-
fers from traditional network solutions because it encodes data across different sources in
the network. This allows the receivers to obtain diversity gains leading to performance
improvements. In other words, cooperation allows multiple low-power sensors to act as
a distributed powerful antenna arrays while forwarding a common set of data. In the fol-
lowing, we describe physical layer model for cooperative radios and then discuss transmit
cooperation protocols in both single-hop and multi-hop scenarios.

10.2.1 Physical Layer Model for Cooperative Radios

In this section, we describe the complex discrete time baseband equivalent model for
the transmit and receive signals of a set of cooperative radios. We denote as Xi[k] the
sequence transmitted by node i, i = 1, 2, . . . , N , and assume that the nodes meet an
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average power constraint
∑P−1

k=0 |Xi [k]|2 ≤ PP i , where P is the duration of the signal
and Pi is the transmission power per symbol. At the receiver, the received signal is
Yi[k], i = 1, 2, . . . , N . Hardware limitations introduce the so-called half-duplex constraint,
namely, the impossibility of concurrent radio transmission and reception. Incorporating this
constraint, we model the discrete-time received signal at radio i and time sample k as:

Yi[k] =
{ ∑N

j=1,j �=i Hi,j [k] � Xj [k] + Wi[k] if radio i receives at time k

0 if radio i transmits at time k
(10.1)

where Hi,j [k] captures the combined effects of symbol asynchronism, frequency-
selectiveness, quasi-static multi-path fading, shadowing, and path-loss between radios i

and j ; Wi[k] is a sequence of mutually independent, circularly-symmetric, complex Gaus-
sian random variables with common variance N0 that models the thermal noise and other
interference received at radio i. Note that Hi,j [k] is assumed to be fixed during the block
length. We assume that the i’th receiver can estimate the channels Hi,j [k] but not the chan-
nels towards other destinations Hm,j [k], for m �= i, and j = 1, 2, . . . , N . We also assume
that, when transmitting, the i’th node does not know Hm,i[k], m = 1, 2, . . . , N, m �= i,
i.e. the channel state is not available at the transmitters. The Hi,j [k] are assumed to be
independent complex-valued random impulse responses for different j , which is reasonable
for scenarios in which the radios are separated by a number of carrier wavelengths (in all
cases, each transmitter has an independent random phase due to its local oscillator).

The key assumption is that cooperating nodes have a common data, represented by
a vector of length M denoted by s = (S[0], . . . , S[M − 1])T . One can assume that the
common message s was embedded in the received vector yi = (Yi[0], . . . , Yi[P − 1])T

where node i is a (cooperative relay). The message possibly includes some errors or noise.
Alternatively, the message can be generated directly at the nodes through the sensor mea-
surements; instances of this last situation arises in data-driven sensor access protocols (Hong
and Scaglione; Mergen and Tong 2006), when the data observed by each of the nodes in
a group of sensors belongs to a set (or type) which is labeled with the same code s.

General relaying is done by mapping the message s onto a matrix code where each col-
umn is the new relay signal. Specifically, each one of the N cooperating relay nodes trans-
mits a column xr = (Xr [0], . . . Xr [P − 1])T of a P × N matrix code X(s) (Figure 10.1).
Denoting by log2(|S|) the number of bits per symbol, (M/P ) log2(|S|) is the spectral effi-
ciency of the code. The number of columns N is the number of cooperating nodes. Different
cooperative schemes correspond to different instantiations of the mapping s → X(s). Hence
cooperative transmission is equivalent to a multi-input single output system (MISO) with
a per antenna power constraint.

Most of the chapter will consider frequency flat fading channels, i.e. Hi,j [k] = Hi,j δ[k],
where δ[k] is the dirac-delta function. This requires the assumption that the group of coop-
erative nodes transmit synchronously; this assumption, in general, requires not only small
multi-path delay spread, but also sub-symbol time accuracy in the nodes’ synchronization,
which can be relaxed in several ways as argued in (Scaglione et al. 2006; Sharp et al. 2007).
We further assume that the channels do not change during the course of the transmission of
several blocks of data and that frequency drifts among transmissions from different nodes
are negligible and the slow phase fluctuations caused by them can be accounted for in the
slowly-time varying fading process characterizing the channel fluctuations.
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Figure 10.1 Codes for cooperative transmission.

Under the assumption of mutual synchronization among the cooperative nodes and flat
fading channel, the received data vector yi = (Yi[0], . . . , Yi[P − 1])T is:

yi=
N∑

j=1

Hi,jxj + wi = X(s)hi + wi , (10.2)

where hi = (Hi,1, . . . , Hi,N)T is the vector of the relays’ fading coefficients.
The parameter that easily captures the benefits of cooperation is the diversity gain,

and is derived by the fact that the transmission occurs through multiple channels that are
independently faded. We adopt following definition of diversity.

Definition: The diversity order d∗ of a scheme with average error probability Pe(SNR)

is defined as d∗ = limSNR→+∞
log Pe(SNR)

log SNR . We say that a code X(s) achieves any diversity

order d and coding gain G if d ≤ d∗ and Pe(SNR) ≤ GSNR−d∗
, where SNR denotes the

signal-to-noise ratio.

10.2.2 Cooperative Schemes with Centralized Code Assignment

The simplest forms of cooperative relays are the so-called amplify and forward (AF) and
decode and forward (DF). In the AF strategy, for each transmit symbol S the nodes
retransmit a scaled version of the samples received over orthogonal channels. This can
be expressed in our general model by the following coding rule when s = S:

X(S) = diag(β1Z1, . . . , βNZN)

Zr = hH
r yr , βr ≤

√
Pr

E
{
hH

r yryH
r hr

} ,
(10.3)

where yr in Zr = hH
r yr is the received vector containing the symbol S of the message. Note

that the constraints on the scaling coefficients βr guarantees that the node transmit power
is Pr . For the DF strategy the nodes decode each symbol of the message and transmit the
decoded symbol. If the transmission are on orthogonal time intervals, the code matrix that
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corresponds to the DF is:

X(S) = diag(
√
P1Ŝ1, . . . ,

√
PT ŜN ), (10.4)

where Ŝi is the estimate of common data S at the i’th node. In both cases (AF and DF),
it is assumed that each relay transmits in an orthogonal channel, so P = N and M = 1,
resulting in a spectral efficiency equal to (1/N) log2(|S|) that decreases with the number
of nodes.

In order to achieve greater spectral efficiency while still obtaining the maximum diver-
sity, similar to multiple-antenna systems, space-time codes have been proposed for dis-
tributed cooperative radios. For example, two cooperating nodes can utilize the Alamouti
code given by the code matrix

X(s) =
[

Ŝ1[0] Ŝ2[1]
Ŝ∗

1 [1] −Ŝ∗
2 [0]

]
, (10.5)

where Ŝi[n] is the estimate of symbol S[n] at the i’th node and s = [S[0] S[1]]T is the
common data set. The space-time codes in cooperative networks are called distributed
space-time codes since the antenna array is distributed in space. However, most of the
so-called distributed space-time codes proposed for cooperative networks are not really the
result of a distributed protocol and require some form of central control that assigns the
space-time code matrix columns to the active relay nodes. Distributed space-time codes
tend to attain diversity gains that are similar to those of DF but have both N and P

growing in the same order. Note that in order to harvest the maximum diversity, the design
of XP×N(s) requires P ≥ N . This means that in order to support many nodes (large N), a
greater latency or a wider bandwidth is required.

There are several alternative designs for transmission of cooperating nodes (Gamal and
Aktas 2003; Hua et al. 2003; Jing and Hassibi 2004; Laneman and Wornell 2003; Yiu et al.
2006). The majority of them require some form of code assignment. Such designs can all
be cast as a code matrix X(s), and the assignment of the columns of this matrix to relays
makes the cooperative protocol centralized.

10.3 Randomized Distributed Cooperative Schemes

As explained in Section 10.2.2, in the presence of a central control unit each of N coop-
erative nodes is assigned a column xl of a predetermined code matrix XP×N(s). When the
nodes are unaware of how many nodes are going to cooperate and when there is no central
code assignment, a randomized coding rule can replace the deterministic one; such rules
can target a fixed maximum diversity order L, which is independent of the actual number
of nodes cooperating.

10.3.1 Randomized Code Construction and System Model

At each node, the s is mapped onto a matrix X(s) equivalent to one of the options discussed
previously in Section 10.2.2:

s → X(s).
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Figure 10.2 Randomized cooperative transmission.

Here, the number of columns L of X(s) denotes the number of antennas for which the
underlying code is designed. For example, X(s) can be the Alamouti code, in which case
L = 2. In randomized cooperation each node transmits a code formed as the random linear
combination of the columns of X(s). Let rj be the L × 1 random vector that contains the
linear combination coefficients for the j ’th node, then x̃j = X(s)rj is the code transmitted
by the j ’th node. For example, a random antenna selection rule corresponds to a specific
choice for the distribution of rj , which is discrete and has only one non-zero entry, picked
at random. The following discussion clarifies the limitations of this choice compared to,
for example, continuous distributions for the rj s.

The received vector is the mixture of each of these randomized codes convolved with
their respective channel impulse response. Define X̃ = [x̃1 x̃2 . . . x̃N ] as the P × N random
code matrix whose rows represent the time and columns represent the space. Under the
assumption of flat fading (see Figure 10.2):

yi =
N∑

j=1

Hi,jX(s)rj + wi = X(s)Rhi + wi = X̃hi + wi , (10.6)

where hi = (Hi,1, . . . , Hi,N)T and R = [r1 r2 . . . rN ]. Alternatively, one can view the ran-
domization as a factor on the effective channel, that is

yi =
L∑

l=1

 N∑
j=1

Hij rjl

 xl + wi =
L∑

l=1

H̃ilxl + wi = X(s)h̃i + wi (10.7)

where h̃i = Rhi = (H̃i1, . . . , H̃iL)T , xl is the l’th column of X(s) and rjl is the (j, l)’th
element of R.

These two definitions express two critical interpretations of the proposed scheme. If
X(s)R is considered as a whole, then the scheme can be viewed as a randomized code X̃
transmitted over channel h. On the other hand, if Rhi is considered as a whole, then the
scheme can be viewed as a deterministic code X(s) transmitted over a randomized channel
h̃i . The second interpretation is especially important for decoding purposes at the receiver.
In order to perform coherent decoding, instead of estimating the channel vector hi (which
would require knowledge of the randomization matrix R), the receiver can estimate the
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effective channel coefficients h̃i . To this end, the training data at the transmitters should
use the same randomization procedure. Estimating the effective channel provides two main
advantages: (i) decoders that have been already designed for multiple-antenna space-time
codes can be directly used for randomized cooperative coding; and (ii) the complexity of
the receiver is fixed and thus one can, for example, choose L ≤ N to have an effective
channel vector h̃i shorter than the actual channel vector hi would be.

Omitting the index of the receiver, the signal model is therefore:

y = X(s)Rh + w, (10.8)

where w ∼ Nc(0, N0I). For our analysis we will also assume that h ∼ Nc(0, �h). In the
analysis of randomized codes, we will assume that the code is perfectly decoded at the
nodes that are cooperating.

Note from (10.8) that randomized cooperative coding can be expressed as the double
mapping:

s → X(s) → X(s)R. (10.9)

In the following, the L × N matrix R will be referred to as the randomization matrix.
Since each node’s processing is intended to be local, ris should be independent for each
i = 1 . . .N , and we will also assume that they are identically distributed. This property
allows the randomized cooperative coding to be implemented in a decentralized fashion.
In other words, each node chooses a random set of linear combination coefficients from a
given distribution, which does not depend on the node index.

There are several choices for the randomization matrix, we are going to discuss mainly
the following examples:

1. Complex Gaussian Randomization: The elements of L × N randomization matrix R
are drawn from a zero-mean, independent and complex Gaussian.

2. Uniform Phase Randomization: In this case the k’th column of R is rk = ak[ejθi [0], . . .

, ejθi [L]]t where each θi[N ] ∼ U(0, 2π) and ak ∼ U(1 − ε, 1 + ε) for some small
ε > 0, where U(a, b) denotes the uniform distribution in the interval (a, b) and all
θi[N ], ak are independent of each other. With this design each node can easily enforce
its transmit power constraint.

3. Complex Spherical Randomization: In this case the k’th column of R, rk , is uniformly
selected on the surface of a complex hyper-sphere of radius ρ, i.e., ||rk|| = ρ. The
ris can be generated by creating zero-mean independent complex Gaussian vectors
with covariance I, and then normalized to have the norm ρ = ||ri || = 1 (Marsaglia
1972; Muller 1959).

4. Random Selection Scheme: The random selection is the simplest among the random-
ized cooperation protocols since each node randomly selects one of the columns of
a given code matrix X(s) at random. The performance of the scheme is limited by
the possibility that two nodes selects the same antenna.

Example 10.3.1 (Cooperative Delay Diversity): Under this strategy, each node randomly
selects a delay and transmits accordingly (Scaglione and Y.-W.Hong 2003; Wei et al. 2004).
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In this way, one can achieve diversity by having the cooperative nodes behave intentionally
as active multi-path scatterers and require no prior channel assignment. Choosing a specific
delay amounts to selecting a column of the toeplitz matrix X(s) whose (i, j)’th element is:

Xij (s) = X[i − j ], (10.10)

where the sequence X[k] could simply equal the message S[k] or could be encoded to
guarantee the extraction of diversity from it. More specifically, (10.10) can be combined
with spread spectrum techniques, or Orthogonal Frequency Division Multiplexing (OFDM)
(see e.g. (Barbarossa and Scutari 2004)).

Cooperative delay diversity scheme (Wei et al. 2004) is a special case of the random
selection scheme. Hence, the performance is limited by the event that all nodes choose the
same delay in which case the scheme would yield no frequency diversity.

Example 10.3.2 (Randomized Space-Time Coding): Another possible choice for X(s) is
a space time code designed for a MISO system with L antennas. For instance, X(s) can
be an orthogonal space-time code (Sirkeci-Mergen and Scaglione 2007). The advantage of
this scheme is that the code can be fixed a priori and will not have to change dynamically
depending on the number of the cooperating nodes.

10.4 Performance of Randomized Cooperative Codes

The design of X(s) has been studied not only in the context of cooperative transmission
(as described in Section 10.2.2), but also in the context of multiple-input multiple-output
(MIMO) systems. There is a vast literature on the design of deterministic codes {X(s)}, and
the design of {X(s)} problem has been thoroughly investigated by many authors, starting
from the seminal work in (Tarokh et al. 1998) and we refer the reader to (Tse and Viswanath
2005) for a comprehensive discussion on codes that harvest diversity gains. This chapter
discusses, instead, the design of the randomization matrix R, summarizing the results in
(Sirkeci-Mergen and Scaglione 2005b, 2006a,b, 2007).

Without loss of generality, we assume that P ≥ L for the P × L deterministic code
matrix X. Define Xi � X(si ). In the following, we will assume that the underlying deter-
ministic code X satisfies the rank criterion (Tarokh et al. 1998):

C1) The Rank Criterion for X: For any pair of code matrices {Xk, Xi}, the matrix (Xk −
Xi ) is full-rank, i.e., of rank L.

This class of codes contains all orthogonal formulations (e.g. orthogonal DF and AF) and
most of the space-time codes (Alamouti 1998; Tarokh et al. 1998).

10.4.1 Characterization of the Diversity Order

The performance degradation in fading channels results from the deep fade event (Tse and
Viswanath 2005, Ch. 3). Diversity is the tool to combat this phenomenon. In the case of
randomized codes, a deep fade event occurs when the effective channel coefficients h̃ fades.
The following lemma asserts the equivalence of analyzing the deep fade event in lieu of
the average error probability Pe, to calculate the diversity of the scheme.
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Lemma 10.4.1 Let {||Rh||2 ≤ SNR−1} be the deep fade event, and

Pdeep(SNR) � Pr{||Rh||2 ≤ SNR−1} (10.11)

its probability. If the assumption C1) is satisfied, then the diversity order of Pe is the same
as that of the deep fade event, i.e.,

d∗ = lim
SNR→∞

− log Pdeep(SNR)

SNR
(10.12)

Proof. See (Sirkeci-Mergen and Scaglione 2007, Lemma 1).

An interesting corollary from the lemma is that the diversity order d∗ is completely
independent of the underlying code {Xi} as long as the underlying code is full rank. The
main utility of Lemma 10.4.1 is that the diversity order of Pdeep is much easier to analyze
than that of Pe.

Let UH �U denote the eigenvalue decomposition of �
1/2
h RH R�

1/2
h , where U is a

random Hermitian matrix and � = diag(λ1, . . . , λη) is the diagonal matrix composed of
the ordered eigenvalues (squared singular values of R�

1/2
h ). The following theorem provides

a very general and clean characterization of the diversity order in terms of the distribution
of the singular values of R�

1/2
h . Let notation 0− denote a negative real number that is close

to zero and �(α1, . . . , αη) represent the following function:

�(α1, . . . , αη) = lim
SNR→∞

− log Pr(λ1 ≤ SNR−α1, . . . , λη ≤ SNR−αη)

log SNR
. (10.13)

The parameters α1, . . . , αη are called the deep fade exponents of the singular values.

Theorem 10.4.2 Under the assumption C1) the diversity order in (10.12) of the randomized
code is

d∗ = inf
(α1,...,αη)

(
�(α1, . . . , αη) +

η∑
i=1

(1 − αi)

)
, (10.14)

where the infimum is over αi ∈ [0−, 1], i = 1, . . . , η.

Proof. See (Sirkeci-Mergen and Scaglione 2007, Th.1).

The interpretation of Theorem 10.4.2 is easier when �h = I. In this case,
√

λi’s are
the singular values of the randomization matrix R. In simpler terms, the theorem states
that the deep fade event happens because of the simultaneous fades of the randomization
matrix (i.e. R may be ill-conditioned) and the channel coefficients with exponents αi’s and
1 − αi’s, respectively. This can be clearly seen in the structure of Eq. 10.14.

Theorem 10.4.2 completely characterizes the diversity order of a randomized code for a
given R; however, it is not obvious how to use Theorem 10.4.2 constructively and therefore
how to optimize the choice of the distribution of R. In fact, it is unclear how one can choose
the singular vector and singular value distributions such that the singular value distribution
has the local properties that are required to maximize d∗ in (10.14) and, at the same time,
the columns of R are statistically independent.

Good and bad design choices for the probability density of R can be determined from
the conditions under which the λi’s are, respectively, less or more likely to be small.
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Since the eigenvalues values λη ≤ · · · ≤ λ1 are ordered, λη is the first to fade. Intuitively
speaking, the λη fades if and only if the columns of R are completely confined to an η − 1
dimensional space or λn is almost zero relative to the rest of the eigenvalues.

Luckily, good designs are not hard to find. Towards the end of this section, we analyze
a number of specific designs for R and conclude that the best designs have random column
vectors in R which have the least probability of being linearly dependent. In fact, the
design that performs best among the ones we examine has R with i.i.d. columns uniformly
distributed in the complex unit sphere.

Choosing αi = 0−, ∀i in Theorem 10.4.2 one can see that the diversity order is always
bounded by the minimum of the number of relays and the underlying code dimension, i.e.:

d∗ ≤ η = min(L, N). (10.15)

Example 10.4.3 (Fractional Diversity): An interesting observation that can be made from
Theorem 10.4.2 is that the diversity orders can be fractional depending on �(·). A concrete
example of this is as follows. Assume that the k’th column of the L × N randomization matrix
is rk = [ejθi [0], . . . , ejθi [L]]t where each θi[N ] ∼ U(0, 2π), and U(a, b) denotes the uniform
distribution in the interval (a, b). Let L = N = 2. Then, the eigenvalues of RRH are λ1 =
2 + √

2 + 2 cos(θ) and λ2 = 2 − √
2 + 2 cos(θ), where θ is a uniform random variable in

the interval [0, 2π). Note that λ1 ∈ [1, 4] with probability 1. Using Theorem 10.4.2 and the
fact that λ1 ≥ 1, we can easily see that the optimal α1 = 0−. Hence,

d∗ = min
α2

�(0−, α2) + 2 − α2. (10.16)

One can derive the distribution of λ2 as

Fλ2(λ) = Pr{λ2 ≤ λ} = 2

π
cos−1

(
1 − λ

2

)
, 0 ≤ λ ≤ 2.

Then, the behavior of the Fλ2(λ) around zero is given as Fλ2(λ) ≈ 2
π

√
λ, as λ→0. The

infimum in (10.16) is obtained when α2 = 1, which gives us a fractional value d∗ = 1.5.

Example 10.4.4 (Random Antenna Selection) : As described before, under this strategy
each node randomly selects to serve as one of the antennas of a multi-antenna system. Using
Theorem 10.4.2, we conclude that the diversity order of random selection scheme is d ∗ = 1
for N < ∞. This result might be discouraging; however, this simple method almost meets
the ideal performance for SNR below a threshold SNRt , which increases with node density.
This can be easily seen by upper bounding the average error probability with a polynomial
in 1/SNR. For example, let the relays chose randomly and uniformly one of the L codes in
the L × L underlying code. Then,

Pe ≤
η∑

m=1

Cm

SNRm , (10.17)

where η � min{N, L} and Cm depends on �h, underlying code and the number of nodes N .
The expression (10.17) says that when the number of nodes is finite but sufficiently large,
the probability of error curve changes its slope, but above a certain SNR threshold, the
expected O(1/SNR) behavior is obtained. The breaking points of the curve change and
move towards higher SNRs as the number of nodes increases.
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The diversity order for a large class of randomization matrices can be identified by
simply comparing the number of nodes N and the size of the underlying code matrix L

using the following theorem:

Theorem 10.4.5 Let R be an L × N random complex matrix and p(R) its probability den-
sity function. Assume that p(R) is bounded and it satisfies the total power constraint:

Tr(RRH ) ≤ PT < ∞ with probability 1 (10.18)

where PT < ∞ is the total relay power available1. For N �= L, if C1) holds and p(R) is
such that R is full rank with probability one, then the diversity order is:

d∗ =
{

N if N ≤ L − 1

L if N ≥ L + 1
(10.19)

For N = L, the diversity order is such that N − 1 ≤ d∗ ≤ N .

Proof. See (Sirkeci-Mergen and Scaglione 2007).

The above result shows that the randomized codes achieve the maximum diversity order
N achievable by any scheme if N < L. It also indicates the diversity order saturates at L if
the number of relay nodes is greater than or equal to L + 1. This problem can be solved by
using codes with large enough dimensions. However, N may be random and may take large
values in practical networks. In such cases, using smaller L may be preferred for decoding
simplicity. For fixed L, randomized codes still give the highest order L for N ≥ L + 1.
Table 10.1 summarizes the diversity order of the schemes described previously for certain
values of N and L.

10.4.2 Simulations and Numerical Evaluations

Given the relative complexity of the diversity expressions, it is hard to optimize over the
randomization matrices that lead to the best symbol error rate performance. Resorting to
numerical simulations sheds some light on what designs work best.

Observing the curves in Figure 10.3, one can note how the error probability is quite
sensitive to the choice of the randomization matrix statistics when N is close to L. Different

Table 10.1 Diversity order for different schemes.

Distribution of R Condition on N and L Diversity Order

Complex Gaussian N = L N

Complex Gaussian N �= L min(N, L)

Uniform Phase N �= L min(N, L)

Uniform Phase N = L = 2 1.5
Complex Spherical Distribution N = L = 2 2
Random selection any N and L 1

1Note that there is no expectation in the power condition. We want it to be satisfied almost surely. Condition
(10.18) implies that the pdf of R has bounded support.
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Figure 10.3 Average Probability of Error versus SNR (dB) (a) L = 2, N = 2 (upper-left);
(b) L = 2, N = 3 (upper-right); (c) L = 2, N = 10 (lower-left); (d) L = 2, N = 3, 7, 11,∞
(lower-right). The channel coefficient are assume i.i.d., i.e., hk ∼ Nc(0, 1). The transmis-
sion power of each node is Pt = 1/N for the centralized Alamouti, antenna selection,
and spherical randomization schemes. For the Gaussian and uniform phase randomization
schemes, Pt = 1/(NL).

randomization choices proposed previously are tested numerically using X(s) as the Alam-
outi scheme, i.e.

X(s) =
[

s1 s2

s∗
2 −s∗

1

]
,

where s = [s1 s2] is the transmitted symbol vector and si = ±1 (BPSK symbols). In addi-
tion, we compare the performance of randomized strategies with the centralized Alamouti.
In the centralized Alamouti, half of the nodes choose to serve as the first antenna, and the
other half choose to serve as the second antenna (if N is odd, at one of the nodes the power
is equally distributed between two antennas).

For N = 2, we can observe that the Gaussian and spherical randomization schemes
have diversity order d∗ = 2; the uniform phase randomization has diversity order d∗ < 2
and the diversity order of the random antenna selection is 1. This is consistent with the
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analytical results. For N = 3, the Gaussian, uniform phase, and spherical randomization
schemes achieve diversity order 2 similar to the centralized scheme. Observe that when
N > L, the randomized scheme except antenna selection achieves the full diversity order
L. This is consistent with the analytical proofs provided previously. Note also that there is
a performance loss in coding gain of the decentralized schemes compared to the centralized
one. Nevertheless, one can observe that as N increases, the performance of the distributed
schemes approaches the centralized scheme in both the diversity and coding gains.

In Figure 10.3d, we plot the average error probability for random antenna selection
scheme for different number of nodes (N ). When N is odd and L = 2, the analytical
expression simplifies to (Sirkeci-Mergen and Scaglione 2005b),

Pe = 1

2N

N∑
k=0

(
N

k

)
g(k) − g(N − k)

2k − N
, (10.20)

where g(x) = x
2

(
1 −

√
x SNR

x SNR+1

)
. Figure 10.3d illustrates a multi-slope behavior for the

random code selection scheme. This is consistent with the discussion in Example 10.4.4.
The Pe curves have a breaking point, which becomes more pronounced as N increases;
beyond a certain SNR, they all have the same slope which corresponds to diversity order
1. For SNR values less than a threshold, the diversity order 2 is achieved. This can be
clearly seen for N = 11 which has a breakpoint around SNR = 35 dB.

10.5 Analysis of Cooperative Large-scale Networks
Utilizing Randomized Cooperative Codes

Cooperative protocols that consider single- or two-hop communication are illustrated in
Figures 10.1 and 10.2, and discussed in the first part of this chapter. As mentioned before,
randomized cooperative codes, which are a special class of cooperative codes, allow a
group of transmitters to reach a destination reliably without any central controller. This
feature makes randomized codes more attractive especially in large networks, where self-
organization is critical. On the other hand, in large-scale networks, it is impossible for
nodes that are further apart to communicate with each other in a few number of hops. The
importance of multi-hop communication in large-scale setups has been acknowledged in
(Boyer et al. 2004; Gastpar and Vetterli 2005; Hong and Scaglione 2003; Kramer et al.
2005; Maric and Yates 2004; Sirkeci-Mergen et al. 2005, 2006). In the following, we
describe a generalized multi-hop communication strategy in which each hop is a group of
transmitters instead of a single node and the message is passed from one group to another
(see Figure 10.4). It is important to note that these groups are not predetermined; they are
recruited during the communication flow based on their received signal quality. Thanks to
randomized cooperative codes, the nodes in a given group do not require any coordination
either. This leads to great simplification for the overall management of the cooperative
links.

In the second part of the chapter, we analyze the transmission dynamics of randomized
cooperative codes in large-scale extended networks. For brevity, we discuss only the broad-
cast scenario-the case where a single source aims to reach entire network (Sirkeci-Mergen
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Figure 10.4 Multistage cooperative transmission.

et al. 2006). In the following, the node index is replaced by the coordinates of the node.
For simplicity, we consider a network where N relay nodes are distributed uniformly in
the disc S = {(x, y) : x2 + y2 ≤ R2} and the source is located at the center (0, 0). The
modified version of Eqn. 10.8 is:

y(x, y) = 1√
L

X(s)RhL(x, y) + n(x, y)2 (10.21)

where L ⊂ {1, . . . , N} denotes a subset of relay nodes that transmits and hL(x, y) denotes
the channel impulse response vector from level set L to a hypothetical node at (x, y).

We consider codes X(s) that are orthogonal, i.e., X(s)HX(s) = cI for some scalar c.
In this case the analysis is simplified since the symbol-by-symbol decoding is optimal
(Larsson and Stoica 2003). The effective SNR is defined as

γL = Pr ||RhL(x, y)||2
L

, (10.22)

where Pr is the relay per-relay power.
In the setup considered, a source node initiates the broadcast by transmitting a packet.

The decision criterion of when to relay packets is a subtle issue. The simple criterion we
choose to consider is based on the notion of matched-filter upper bound, which is directly
linked to effective received SNR. Specifically, we consider a reception successful if γL
exceeds a certain threshold τ . Considering this criterion, let S = {(xi, yi) : i = 1, . . . , N}
be the set of relay nodes that are randomly and uniformly distributed in S. We will call the
nodes who can hear the source with sufficient signal-to-noise ratio has level-1 nodes. The
set of random locations corresponding to the nodes in level-1 is

S1 = {(x, y) ∈ S : γ0 ≥ τ },
where γ0 is the effective SNR due to transmission of the source node. The level-1 nodes
decode and retransmit the source after successful reception. This transmission excites a

2Note the normalization of power with 1/L.
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second group of nodes and the retransmissions continue until every node who hears the
others with sufficient SNR, retransmits once. The random locations of the level-k nodes
form the set:

Sk = {(x, y) ∈ S \
k−1⋃
i=1

Si : γLk−1 ≥ τ }, (10.23)

where Lk−1 ⊂ {1, . . . , N} is the index set of level (k − 1) nodes. See Figure 10.4 for an
example.

An important property of the described protocol is its decentralized nature. The nodes
use a simple SNR threshold criterion to decide if they are going to retransmit or not, i.e.,
every node monitors its received SNR and decodes and retransmits using randomized codes
if and only if its SNR exceeds a certain pre-determined threshold. In this way, the network
can operate in a distributed fashion, since the nodes only use the locally available received
SNR information to make transmission decisions. We need to note that the nodes do not
retransmit the same packet more than once in order to avoid cycles in the network. This
can be handled locally at the node via checking a table of previously transmitted packets.
We assume that this control is done with no error.

In the following, we present a framework to analyze the evolution of the stochas-
tic process Sk(x, y). We fix the total relay power PrN and consider the asymptote as
N→∞,Pr→0. Here, the relay power density,

Pr = PrN

Area(S)
= Prρ,

is also fixed, where ρ denotes the node density. This asymptote will also be called continuum
model. The analysis of the sets Sk(x, y) in the continuum lets us understand the effect of
network parameters such as the source/relay transmission powers, the decoding threshold
and intended diversity order L on the performance.

We are interested in knowing how likely that a node in a certain location belongs to
the k’th level. For this reason, we define the following family of probability functions:

Definition 10.5.1 Pk(x, y) denotes the probability that a node at location (x, y) joins
level-k.

As we noted in Section 10.3, there is an interesting tradeoff in choosing the code order
L relative to the expected number of cooperative nodes N : if L is likely to be smaller
than N the diversity saturates to L, but the scheme requires less bandwidth or latency and
may be overall preferable to a scheme with L that grows in the order of N . Hence, for
N � 1, we refer to the case where L is finite as the narrowband network, and to the case
where L = N as the wideband network. In mathematical terms, the two different regimes
we consider are

Case I – (Narrowband): L is fixed and N→∞
Case II – (Wideband): L = N and N→∞, L→∞

Theorem 10.5.2 Let �(x − x ′, y − y ′) denote the path-loss attenuation function between
two nodes located at (x, y) and (x ′, y ′). Let σL = E{|hi |2}, where hi is the i’th element of
hL(·). Let rij denote the (i, j)’th element of the randomization matrix R. Assume that rij
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are i.i.d., E{rij } = 0, and E{|rij |2} = 1. Under these assumptions, consider the continuum
model. The Pk(x, y), k = 1, 2, 3 . . . is given by a recursive set of equations

Pk+1(x, y) = Pr{γk(x, y) ≥ τ }
k−1∏
i=0

[1 − Pr{γi(x, y) ≥ τ }], (10.24)

where P1(x, y) = Pr{||γ0(x, y)||2 ≥ τ }, γ0(x, y) = Ps‖h0(x, y)‖2, Ps is source transmis-
sion power, and h0(x, y) is the channel coefficient from source to a node located at (x, y).

The function γk(x, y) in two different asymptotic regimes is given as

γk(x, y) ∼ χ2(2L, σ 2
k (x, y)/L) narrowband

γk(x, y) = σ 2
k (x, y) wideband

where the notation X ∼ χ 2(V , σ 2) is equivalent to saying X/σ 2 is a chi-square random
variable with V degrees of freedom and

σ 2
k (x, y) =

∫∫
S

PrPk(x
′, y ′)�(x − x ′, y − y ′) dx ′ dy ′. (10.25)

Proof. See Appendix for the proof.

The functions Pk, σ 2
k define a non-linear dynamical system which evolves with k.

Although the analytical solution of this system is hard to find, it can be evaluated numer-
ically. Due to symmetric structure of the path-loss model and the network topology, the
Pk(x, y) and σ 2

k (x, y) are only functions of r =
√

x2 + y2. For convenience, we will use
the notations Pk(x, y) and Pk(r) interchangeably.

10.5.1 Numerical Evaluations and Further Discussions

For our numerical evaluations in this section, we will use the following path-loss model

�(r) �
{

1/r2 r0 ≤ r

1/r2
0 0 ≤ r ≤ r0,

(10.26)

with a small r0 > 0 to avoid the singularity in the integral (10.25). The squared-distance
attenuation model �(r) = 1/r2 comes from the free-space attenuation of electromagnetic
waves, and it does not hold when r is very small (Rappaport 2001).

We evaluate (10.24) and (10.25) numerically for large R. In Figures 10.5a and 10.5b,
we plot the level curves, Pk(r), r ∈ R for the narrowband network. We observe that there
exists a critical threshold τc. For τ > τc, the transmissions eventually die out (Figure 10.5b),
that is i.e.,

sup
r∈R2

Pk(r)→0 as k→∞.

Otherwise, the transmissions propagate to the whole network, while the level curves, Pk(r),
r ∈ R, become wider as k increases (Figure 10.5a). We observe similar behavior for the
wideband network (Figures 10.6a and 10.6b). Interestingly, the level curve Pk(r) has a
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Figure 10.5 (a) Transmissions continue. τ = 1,Ps = 2,Pr = 1, L = 2, r0 = 1 (b) Trans-
missions die out. τ = 3,Ps = 2,Pr = 1, L = 2, r0 = 0.4

.
discrete structure in the wideband scenario, that is Pk(r), k > k∗, for some k∗, takes values
either 0 or 1 for a given r . This can be understood by analyzing the analytical formulation: in
the continuum asymptote for wideband networks P1(r) is a continuous function; however,
Pr{γk(x, y) ≥ τ } only takes values 0 or 1. The effect of P1(x, y) taking values in the
interval [0, 1] tends to cause negligible effect in Eqn. (10.24) as k increases.

In general, we do not have an explicit characterization of τc. The numerical analysis
shows that there exists a phase transition in the network behavior, i.e. if the decoding
threshold is below a fixed value (or equivalently the power density is above a fixed value),



270 RANDOMIZED COOPERATIVE TRANSMISSION

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

(a) τ = 1, Ps = 2, Prbar = 1, L = 2, r0 = 1

r: distance to source node

P
k(

r)

Level–1
Level–2
Level–3
Level–4

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
(b) τ = 3, Ps = 2, Prbar = 1, L = 2, r0 = 0.4

r: distance to source node

P
k(

r)

Level–1
Level–2
Level–3

Figure 10.6 (a) The transmissions continue. τ = 1,Ps = 2,Pr = 1, r0 = 1. (b) The trans-
missions die out. τ = 3,Ps = 2,Pr = 1, r0 = 0.4.

a succession of cooperative transmissions can reach reliably all network nodes. Otherwise,
part of the nodes do not get the source message.

To compare the message propagation behavior of both wideband and narrowband sce-
narios, in Figure 10.7 we show the corresponding Pk(r) for both network asymptotes. For
both wideband and narrowband models, P1(·) is the same; however, the level curves Pk(·)
differ significantly for large k. In particular, the level curves in the narrowband case move
faster. This is a rather counter-intuitive result, because the orthogonal system with large L

uses much more bandwidth, and the use of orthogonal channels is more reliable in the sense
that the receiver eliminates/reduces the effects of fading via maximal ratio combining. Our
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Figure 10.7 Wideband vs. narrowband transmission: large L corresponds to wideband: (a)
low threshold regime; (b) high threshold regime.

result implies that the system with low diversity and therefore with fading provide faster
message delivery on the average.

Clearly, a high dimensional code reduces the probability that the combined signal
experiences a deep fade; however, this comes at the cost of reducing the probability that
the signal experiences a favorable fade. In a dense network, favorable fading realizations are
very valuable, because when the node density is high, although there is a small probability
of having a good fading realization, there is always a fraction of nodes that experiences
them. Once these lucky nodes receive and retransmit, the nodes neighboring them see a
boost of signal power because of the properties of �(r). In conclusion, the forefront of each
level tends to be placed further when there is less diversity and the levels and the mode of
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the distribution of Pk(r) for small values of L tends to be ahead compared to the forefront
of the corresponding Pk(r) for large L.

In the narrowband system, favorable fading realizations occur, when the phases of two
or more simultaneously transmitting nodes happen to add coherently, or when one of the
transmitting nodes experiences a very good effective channel to the receiver. Considering
that finite L scenarios do not require infinite bandwidth, we conclude that the narrowband
schemes are more advantageous also in terms of end-to-end delay.

10.6 Conclusion

In this chapter, we proposed a decentralized coding for distributed networks which is
based on independent randomization done at each node. We analyzed its performance and
proposed different designs that achieve the diversity order (min(N, L)) when the number
of nodes N is different than the number of antennas L in the underlying code. For N = L,
we presented examples where the diversity order is fractional. In addition, we showed that
the randomized schemes achieve the performance of a centralized code in terms of coding
gain as the number of nodes increases.

Furthermore, we analyzed the behavior of a wireless network with cooperative broad-
casting where each group utilizes randomized codes. The analysis is based on the idea of
continuum approximation, which models networks with high node density. The interesting
conclusion drawn from the analysis is that there exists a phase transition in the propagation
of the message, which is a function of the node powers and the reception threshold. In
addition, we presented a trade-off between the intended diversity order and the speed of
propagation.

10.7 Appendix

In the following, we analyze the evolution of the functions Pk(x, y) with k. First, we con-
sider the asymptotic statistics of effective SNR in both narrowband and wideband regimes.
Let σL = E{|hi |2}, where hi is the i’th element of hL(·). Let rij denote the (i, j)’th element
of the randomization matrix R. For simplicity, we assume that rij ’s are i.i.d., E{rij } = 0,
and E{|rij |2} = 1. In the following, we consider the effect of path-loss attenuation and

small-scale fading (αij
i.i.d.∼ Nc(0, 1)) on the flat fading channel coefficients. Under these

assumptions, the the asymptotic statistics of the effective SNR γL (due to transmission of
nodes in the set L) are given as:

Case I – (Narrowband): Fix L and take N→∞:

γL
d→ χ2(2L, σ 2

L/L) (10.27)

Case II – (Wideband): (L = N , and N→∞, L→∞):

γL
p→ σ 2

L. (10.28)

Here
d→ refers to convergence in distribution and

p→ refers to convergence in probability.



10.7. APPENDIX 273

The probability that a node at location (x, y) receives the source transmission success-
fully and joins level-1 is:

P1(x, y) = Pr{||γ0(x, y)||2 ≥ τ },

where γ0(x, y) = Ps ||h0(x, y)||2, Ps is source transmission power, and h0(x, y) is the chan-
nel coefficient from source to a node located at (x, y). Let γk(x, y) denote the asymptotic
SNR function due to transmission of k’th level at a node located at (x, y), k = 1 . . ..

From the law of large numbers it follows that, for each set U ⊂ S, the number of level-1
nodes in U scales as

∫∫
U

ρP1(x
′, y ′) dx ′ dy ′, i.e.,

|U ∩ S1|∫∫
U

ρP1(x ′, y ′) dx ′ dy ′ → 1 as ρ→∞ (10.29)

almost surely. When Prρ is fixed to Pr , the total transmit power of level-1 nodes Pr |U ∩ S1|
converges to

PT =
∫∫

S

PrP1(x
′, y ′) dx ′ dy ′ (10.30)

almost surely. Furthermore, the locations of level-1 nodes are distributed according to the
density ρ̃(x ′, y ′) � P1(x′,y′)∫∫

S
P1(x′,y′) dx′ dy′ . Hence

σ 2
1 (x, y) =

∫∫
S

P rP1(x
′, y ′)�(x − x ′, y − y ′) dx ′ dy ′. (10.31)

If this σ 2
1 (x, y) is substituted into Equations 10.27 and 10.28, we see that a node at (x, y)

receives the level-1 transmission successfully with probability Pr{γ1(x, y) ≥ τ }. The prob-
ability that a node at (x, y) joins level-2 is

P2(x, y) = Pr{receives from level-1, does not receive from the source}
= Pr{γ1(x, y) ≥ τ } [1 − Pr{γ0(x, y) ≥ τ }]. (10.32)

In both Case I and II the Pr{γ0(x, y) ≥ τ } and Pr{γ1(x, y) ≥ τ } are non-linear functions
of σ 2

0 (x, y) and σ 2
1 (x, y) respectively. In particular, in Case II, Pr{γ1(x, y) ≥ τ } can only

be 1 or 0 depending on whether σ 2
1 (x, y) ≶ τ .

Now, we can generalize what is done so far for all values of k. Let σ 2
k (x, y) be the

sum of signal powers from level-k at location (x, y). For k = 1, 2, 3, . . ., the equations are

Pk+1(x, y) = Pr{γk(x, y) ≥ τ }
k−1∏
i=0

[1 − Pr{γi(x, y) ≥ τ }], (10.33)

σ 2
k (x, y) =

∫∫
S

PrPk(x
′, y ′)�(x − x ′, y − y ′) dx ′ dy ′. (10.34)

This completes the proof.
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11

Application Dependent Shortest
Path Routing in Ad-Hoc Sensor
Networks

Saswat Misra, Lang Tong, and Anthony Ephremides

11.1 Introduction

Consider the generic communications network depicted in Figure 11.1. Such a network
consists of nodes (sometimes known as switches or routers) and communication links
(which may be wireline or wireless). Each node may generate (the same or different) data
destined for some or all other nodes in the network. For example, consider the data generated
at a node S intended for a node D in Figure 11.2. As shown in the figure, there are many
possible paths on which the data can be routed from S to D. In general, routing seeks to
determine the ‘best’ path(s) from each potential source to each potential destination subject
to network constraints. Typical routing schemes may be chosen to address some combination
of the following: (i) minimization of end-to-end routing delay, (ii) maximization of network
throughput, (iii) avoidance of unreliable communications links, and (iv) minimization of
communication costs. In this chapter, we will see that the definition of the ‘best’ path,
and the specification of network constraints, depends strongly on the network’s class, e.g.,
criteria that are sensible for wireline networks may not be so for wireless networks, and/or
mobile ad-hoc sensor networks.

Suppose that we have a well-defined notion of what constitutes the ‘best’ route for a set
of known network constraints for a given network. It is not yet clear how to determine the
optimal routes. A conceptually straightforward strategy to determine optimal routes would

Wireless Sensor Networks: Signal Processing and Communications Perspectives A. Swami, Q. Zhao, Y.-W. Hong and L. Tong
Ò 2007 John Wiley & Sons, Ltd
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Figure 11.1 A generic communications network. Reproduced by permission of Ò 2007
IEEE.
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Figure 11.2 Three possible routing strategies from node S to D in a communications
network.

be to test each possible route sequentially and select the one that provides best performance
while satisfying the network constraints. Routes could then be hardcoded into nodes for
each possible source-destination pair before deployment. However, such an approach is
prohibitively complex, quickly becoming intractable as the network size increases. Further,
implementation would be difficult or impossible in wireless or wireless sensor networks
where the network topology is variable and unpredictable in advance, and inaccessible
after deployment. Shortest Path Routing (SPR) is a classic routing technique that simplifies
the determination of optimal routes. Central to SPR is the definition of a link metric, a
number assigned to each link in the network, that quantifies its benefits and costs. Once an
appropriate link metric has been defined, the optimal shortest path routes can be computed
in polynomial time and in a distributed fashion.

In this chapter we study the evolution of shortest path routing, including relevant
algorithms and protocols. Our aim is to show how each generation of network (wire-
line, wireless, and sensor) has different routing requirements, and how SPR was adapted
to meet those requirements. Our main contribution to the literature is the argument for
new application-dependent strategies for SPR in ad-hoc wireless sensor networks, which
we exemplify through a detailed example in Section 11.4.3. In Section 11.2, we review
shortest path routing and describe its advantages and disadvantages for wireline commu-
nications networks. In Section 11.3, we extend our discussion to wireless networks. We
discuss the new challenges presented by such networks, and the SPR techniques developed
to address them. In Section 11.4, we discuss the application of SPR to ad-hoc wireless
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sensor networks. First, we argue that routing for such networks should be designed in an
application dependent manner. Then, we present an in-depth example of such routing to
stimulate discussion and serve as an archetype for future research.

11.1.1 Major Classifications

We describe the key criteria used to differentiate networks and routing algorithms. These
concepts will be referred to throughout the chapter.

The first criteria is the switching mode; we describe the cases of circuit switched and
packet switched networks. Consider data generated at an arbitrary node S destined for
another (arbitrary) node D as shown in Figure 11.1. Circuit switching is often used when
data is transmitted in long (relative to the time required to establish the connection) steady
streams and must be received in real-time at the destination. In circuit switched networks,
a path from S to D is selected and reserved for the entire duration of the data transmission.
This is the switching mode used in traditional voice telephone calls and corresponds to
reservation-based constant bit rate (CBR) connections on the internet. By contrast, packet
switching is often preferred when S generates bursty or intermittent traffic. In packet
switching, the stream of data to be transmitted from S to D is decomposed into smaller
blocks that are individually transmitted to D. The idea is that if the network consists of
many source-destination pairs, each of which generates such bursty traffic, messages are
transmitted more efficiently by interleaving blocks from different links as they traverse the
network. Packet switching is the most common switching method in use today (e.g., in
the Internet). Packet switching networks can be further classified as virtual circuit based,
in which all packets travel the same route from S to D and arrive in sequential order, or
datagram based, in which two packets from S can travel in different routes and appear out
of sequence at D.

Routing algorithms can also be classified as static or adaptive. In static routing, routes
are chosen based on the network topology and remain fixed over a long period of time,
changing only due to events such as link failure. In adaptive routing, nodes monitor
congestions levels and other network parameters and dynamically change routes in real-
time.

Routing algorithms can also be classified as centralized or distributed . In centralized
routing algorithms, a central controller determines routes and periodically updates routers
with this information. In distributed routing algorithms, routers send messages to each other
to determine routes based on some prescribed metric.

Finally, routing algorithms can be classified as flat or hierarchical . In flat algorithms,
all nodes are functionally equal and run identical processes. In hierarchical algorithms,
certain nodes are equipped with special functionality and form a ‘backbone’ network. Data
generated at non-backbone nodes is first routed to a backbone node. From there, data travels
the backbone network until it reaches the general area of the destination. At this point, data
leave the backbone and travel through regular (non-backbone) nodes to the destination.

11.2 Fundamental SPR

We begin by reviewing SPR for wireline communications networks. We will see that
many of the routing concepts encountered for wireline networks will serve as a basis for
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more advanced implementation in wireless and ad-hoc sensor networks. Standard references
include (Bertsekas and Gallager 1992), (Kershenbaum 1993), and (Leon-Garcia and Widjaja
2000). Before proceeding, the reader may wish to consult Section 11.6 for a review of basic
graph theory and related terminology.

11.2.1 Broadcast Routing

Before discussing SPR algorithms, we briefly describe broadcast routing. It is often the
case that a message has to be broadcast from a common origin to all nodes in a network.
For example, control and update messages may fit this paradigm. Broadcasting can also be
viewed as a simple yet robust form of routing messages from point-to-point that may be
useful when nodes lack topological information, or (as will be the case in Section 11.2)
when links are unreliable. The price paid for this robustness is efficiency. We first study
a basic form of broadcasting known as flooding, and then a more energy-efficient variant
based on the idea of minimum weight spanning trees. In this section we assume that G is
a undirected graph and, for simplicity, that G is connected.

Flooding

The simplest broadcast strategy is flooding. In flooding, the origin node (which may change
with time, based on network events) sends its packetized information to its neighbors, i.e.,
those nodes to which it is connected via an arc. Neighbors then send the message to their
neighbors, and so on. It is clear that the message will eventually reach all nodes in G. To
reduce unnecessary transmissions and to ensure a finite stopping time two rules are used:
(i) a node will not send a packet to a node from which it was received, and (ii) a node will
send a packet to each of its neighbors at most once.

Let L = |A| denote the number of arcs in the network. By condition (i) a node will
transmit a message out of all of its arcs except for arcs through which the message was
received. Thus, each arc is utilized by some node at least once. From (ii), no link is used
more than twice. Thus, the total number of transmissions in flooding is between L and 2L.
In a network, messages may be generated by many different nodes in rapid succession. It
is assumed that each message is associated with a unique identifer to avoid the ambiguities
when simultaneously routing several messages, and that nodes follow rules (i) and (ii) on
a per message basis. An important feature of flooding is that the process is decentralized;
it can be carried out if the local nodes follow rules (i) and (ii) independently, and without
the use of a central controller.

Minimum weight spanning trees

A broadcasting scheme that strives for a better tradeoff between robustness and efficiency
is based on construction of a minimum weight spanning tree (MWST). Suppose that to each
arc in the network we assign a real valued link cost. A MWST finds the a set of routes from
a source node S to all other nodes that travels the set of links with the minimum sum link
cost, and therefore, that floods the network at the minimal total cost. It can be shown that a
unique MWST exists if all arc weights are distinct (Bertsekas and Gallager 1992, p. 393),
and we will make this assumption in the sequel. The generalization of the algorithms
below to non-distinct arc lengths is straightforward, but uniqueness is not guaranteed. Let
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G = (N ,A) be a graph with node set N and arc set A, and assign a weight wij ∈ R to
each (i, j) ∈ A.

Prim-Dijkstra algorithm A centralized method for constructing a MWST G′ = (N ′,A′)
from G that terminates in |N | − 1 iterations is given by the Prim-Dijkstra algorithm. The
idea is to construct G′ iteratively using a greedy approach. We start by including in G′ a
single arbitrary node. Then at each step we add to G′ the outgoing arc, whose terminating
node is not already contained in G′, that has the least weight. The algorithm is as follows.

1. Set I = 0. Let N ′ = {n}, where n ∈ N is arbitrarily chosen

2. If I = |N | − 1, stop (G′ is a MWST). Otherwise, add to G′ the arc which has exactly
one node contained in G′ and which has minimum outgoing weight, i.e., let

(γ , δ) = arg min
γ∈N′, δ∈N−N′

wγδ,

and let N ′ := N ′ ∪ {γ } and A′ := A′ ∪ (γ , δ). Let I := I + 1, and return to step 2.

While the required number of transmissions for flooding G is between |N | and 2 |N |,
the required number for flooding G′ is only |A| = |N ′ − 1| ≤ |N |, as each arc in the
spanning tree is traversed exactly once using the flooding operation described in Section
11.2.1.

Distributed algorithms Distributed Algorithms also exist for constructing the MWST.
Seminal works include (Spira 1977), (Humblet 1983), (Gallager et al. 1983), and the ref-
erences therein.

11.2.2 Static Shortest Path Routing

Broadcasting is inefficient when a network is large. In this case SPR is a desirable alter-
native. We will describe SPR in the remainder of this chapter. We assume directed graphs.
We assign to each directed arc (ni, nj ) in G a real number di,j . By convention, we set
di,j = ∞ if an arc does not exist. As in the case of broadcasting, the number di,j represents
the cost of using a particular arc in the network. Let (n1, . . . , n�) denote a directed walk.
We define the length of the walk to be

d1,2 + d2,3 + · · · + d�−1,�.

Consider an arbitrary pair of nodes, ni and nj . The goal of shortest path routing is to find
the minimum length path from ni to nj . We assume that G is connected, so that there
exists at least one path from every source to every destination. To make the problem well
defined and ensure finite stopping times for the algorithms below, we assume that every
cycle in the network has a positive length, although certain arcs may have negative costs.
Finally, it should be clear that the discussion below can be applied to undirected networks
simply by setting di,j = dj,i for all i, j .

One challenge in implementing SPR is the determination of a link cost that is represen-
tative of the routing goals and constraints (see Section 11.4 for common metrics in ad-hoc
sensor networks). After this, the protocols described in this section make implementation
of SPR fairly straightforward. We consider both centralized and decentralized algorithms.
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Centralized implementation

We review two fundamental centralized algorithms for determining shortest path routes
below.

The Bellman-Ford algorithm We describe the centralized Bellman-Ford algorithm (CBF)
which finds the shortest paths from every origin node to a particular destination node. To
determine all shortest paths in a network we must run the CBF algorithm |N | times, once
for every possible destination node. It will be seen that the CBF algorithm terminates in
at most |N | steps and has a worst-case complexity of O(|N |3). One important feature
of CBF is that it works when arc length are negative. When arc lengths are positive,
Dijkstra’s algorithm (see the next subsection) often solves the shortest path problem with
fewer computations.

First, we show how to compute the shortest path lengths. Without loss of generality let
the destination node be 1. Let Di denote the length of the shortest walk from node i to
node 1, and let Dh

i denote the shortest walk from a node i to node 1 that contains at most
h ≥ 0 arcs. The algorithm for computing Di is given by the following steps

1. Initial Conditions . Set Dh
1 = 0, ∀h ∈ {0, 1, . . .}, D0

i = ∞, ∀i ∈ {2, . . . , |N |}, and
set h = 0.

2. Evaluate.

Dh+1
i = minj

[
di,j + Dh

j

]
, ∀i �= 1, (11.1)

and let h := h + 1.

3. If Dh
i = Dh−1

i ∀i, stop. Let Di = Dh
i ∀i. Otherwise goto step 2.

The worst case complexity is evaluated as follows: consider a fixed origin node i. The
algorithm above terminates after h iterations, where h ≤ |N | since the number of iterations
cannot exceed the number of nodes in the network. For each iteration at most |N | − 1
terms are compared to find the minimum. Finally, the process must be carried out for all
|N | potential origin nodes, leading to a worst-case complexity of O(|N |3).

Suppose that the CBF algorithm above has terminated and the shortest path lengths
{Di}i obtained. The corresponding shortest path routes can be found by observing that,
upon termination,

D1 = 0, and

Di = min
j

[
di,j + Dj

]
, (11.2)

∀i ∈ {2, . . . , |N |}. Now, select |N | − 1 arcs from this network as follows: For each i �= 1
select a single arc (i, j) corresponding to di,j which achieves the minimum in (11.2). The
resulting set of arcs is a subgraph G that contains N − 1 arcs and that does not contain any
cycles (a consequence of the positive cycle length assumption). Therefore, it is a spanning
tree for G. The resulting spanning tree can be verified to specify the shortest path routes
from every node to the destination node. The process of determining the shortest path
lengths and corresponding routes is illustrated in Figure 11.3.
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Figure 11.3 (a) The network (N , A) with N = {1, . . . , 6} and A = { (6, 5), (6, 4),
(4, 5), (5, 3), (4, 2), (3, 2), (2, 1), (3, 1) }. From this graph, the Bellman-Ford algorithm
returns the ordered set of shortest path lengths, (D1, . . . , D6) = (0, 1, 3, 7, 5, 8). (b) The
corresponding set of shortest path routes is constructed using the procedure described in
the text, yielding this graph.

The CBF algorithm is a centralized approach to the implementation of SPR. This is
because the algorithm is most readily implemented by a central controller (e.g., a particular
node) that has complete topological information of the network. After computing {Di}i and
the corresponding shortest path routes, the central controller distributes this information to
all network nodes, finalizing the implementation of SPR.

Dijkstra’s algorithm Suppose that we wish to determine the shortest path routes for a
network containing only positive links costs. A well-known algorithm that has a smaller
worst-case complexity than CBF is given by Dijkstra’s algorithm (DA). We describe a
centralized version.

DA is implemented using an iterative algorithm that operates as follows. Suppose that
the destination node is 1. Let Di, i ∈ {1, . . . , |N |}, denote the shortest path length of the
ith closest node to node 1 (in terms of shortest path lengths). We seek to determine {Di}.
In the first step of the algorithm, we determine the shortest path length of the node closest
to 1. In the second step, we determine the shortest path length of the second closest node
to 1. In general, in the ith step we determine the shortest path length of the ith closest
node to 1. Clearly, the algorithm terminates after exactly |N | − 1 iterations. DA hinges
on the following straightforward observation: Suppose that we know D1, . . . , DK and the
corresponding nodes, n1, . . . , nK . Then the (K + 1)th closest node, nK+1, has a shortest
path to node 1 consisting of either a single arc, directly connected to node 1, or else a route
that only passes through nodes in {n1, . . . , nK }. (To see this, assume that the shortest path
of node nK+1 passes through a node v /∈ {n1, . . . , nK }. It follows immediately that v is
closer to node 1 than nK+1 since links costs are positive, which is a contradiction.) Using
this observation, node nK+1 and its shortest path distance DK+1 can be found efficiently.
Since we know n1 = 1 and D1 = 0 initially, we have a recursive algorithm for determining
{Di}i≥1 which is given below.

Let P be a set of ‘permanently labeled’ nodes, i.e., those which for which we have
determined the shortest path distance to node 1. Formally, the DA is:
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1. Initialization. Set P = {1}, D1 = 0, and Dj = dj,1 for j �= 1.

2. Find next closest node. Determine i /∈ P such that

Di = min
j /∈P

Dj .

Add node i to the set of permanently labeled nodes, i.e., P := P ∪ {i}. If P contains
all nodes, then stop; the algorithm is complete.

3. Updating of labels. For all j /∈ P set

Dj := min
i∈P

[
Dj, dj,i + Di

]
(11.3)

Go to step 2.

Once the algorithm terminates, the {Di} are determined. The shortest path routes corre-
sponding to {Di} can be found via a MWST as described in the last part of Section 11.2.2.
To estimate the worst case complexity of the DA note that there are |N | − 1 iterations, and
that |N | comparisons are made in each iteration (due to the minimization in step (11.3)).
Thus, the worst case complexity is O(|N |2).

The DA algorithm is a centralized approach to SPR. This is because the algorithm is
most readily implemented by a centralized controller that has complete topological infor-
mation of the network. After the controller computes shortest path routes, it delivers this
information to all network nodes.

Distributed implementations

In many networks there does not exist a central controller to implement the algorithms
described above. In this case, distributed shortest path algorithms are needed in which
individual nodes exchange messages among each other to determine link costs and optimal
routes in a way that is efficient, stable, and robust to link disruptions. First, we describe two
broad classes of distributed algorithms, known as Link State Routing and Distance Vector
Routing. Then we present a detailed example of a Distance Vector Routing algorithm known
as the Distributed Bellman Ford algorithm. Finally, we discuss the effect of link failures
and routing loops in distributed algorithms.

Link State Routing (LSR) is a class of distributed shortest path algorithms in which each
node is responsible for determining the shortest path route to every possible destination. To
do this, each node maintains (estimates of) the full topological information of the network.
To keep the network topology up to date, each node periodically broadcasts its entire
topological map through the network. The shortest paths are then computed locally at each
node using the centralized Dijkstra’s algorithm described above. Widely used link state
protocols in wireline networks include OSPF (Moy 1998) and IS-IS (Oran 1990).

Distance Vector Routing (DVR) is a class of distributed shortest path algorithms in
which each node maintains a list of its (estimated) distance to every destination, and the
next node in the path to reach the destination, i.e., (destination, next hop) pairs. DVR
algorithms are typically implemented variants of the distributed Bellman-Ford algorithm,
described below.
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In LSR, nodes require large storage space to maintain full topological tables and CPU
power to calculate shortest path routes. Further, large amounts of network traffic are gener-
ated by flooding large packets over all the network links. However, convergence is typically
faster than for DVR making routing loops (created when different nodes have routing tables
of varying degrees of staleness) less common and more short-lived. Importantly, LSR avoids
the potentially serious problem known as ‘counting to infinity’ that occurs in many DVR
algorithms (explained below).

The distributed Bellman Ford algorithm As an example of DVR, we discuss the Dis-
tributed Bellman-Ford (DBF) algorithm. DBF is a distributed implementation of the CBF
algorithm discussed in Section 11.2.2. Each node in DBF requires only communications
with, and knowledge of the link cost of, the neighbors to which it is directly connected. In
the following discussion, we assume that all cycles of the network G are of positive length,
and that G is an undirected graph. For convenience, we consider the shortest path from all
nodes to a single destination node, taken to be node 1 (in practice, the algorithm would be
run once for each potential destination node).

Suppose first that the network topology does not change with time. Operation of DBF
is summarized in Figure 11.4 and explained below. All nodes send (and receive) update
messages at synchronized, regular time epochs, which we take to be 0, T , 2T , . . .. In every
epoch, each node i generates a ([next hop], [estimated cost]) pair containing the length of
the shortest known path length from node i to node 1 (that node i is currently aware of), as
well as next node to which node i must forward data to remain on that path. This message
is sent to all of node i’s directly connected neighbors. It follows that each node i will also
receive similar updates from its neighbors advertising their ([next hop], [estimated cost])

j

k

li

. . .

. . .

. . .
( xi , yi )

( xi , yi )

( xi , yi )

( xl , yl )

( xj , yj )

( xk , yk )

Figure 11.4 Illustration of DBF. Consider the node i in a network. At time epochs,
T , 2T , . . ., node i sends its ([next hop], [estimated cost]) pair (xi, yi) to each of the nodes
to which it is directly connected; nodes j ,k, and l. Similarly, node i receives ([next hop],
[estimated cost]) pairs from each of its direct neighbors; also j ,k, and l. From these received
packets, node i updates its estimate of the total path length, and next hop to be taken, to
reach the destination.
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pairs to the destination. From these updates, node i can compute its revised estimated
shortest path to node 1, as well as the next node to which it should forward data to remain
on the path. This is done using (11.1) from CBF, but with the minimization taken over
just those nodes from which it has received updates. This procedure must be repeated in
parallel for all |N | nodes in the network. Therefore, each update message actually consists
of a vector of |N | ([next hop], [estimated cost]) pairs (one for each potential destination
node). It can be shown that the DBF algorithm converges to the correct shortest path
routes in a finite amount of time. At the termination of DBF, each node in the network
maintains a table of consisting of |N | entries, each of format ([destination node], [next hop],
[estimated cost]). A packet following these tables from source to destination will travel the
shortest path route.

There are two more facets of DBF that have made it a practically viable strategy for
implementing SPR in real-world networks (e.g., DBF was the first routing algorithm used on
the ARPANET and has been since used as the basis for algorithms found in many standards).
First, it can be proven that DBF converges in finite time to the correct SPR solution even
when nodes are free to send update messages in an asynchronous manner independently
of each other. Therefore, it is not necessary to have update messages transmitted in well-
coordinated time epochs, as described above. The price paid for asynchronous operation is
the potential for slower convergence of the algorithm to the SPR solution (the convergence
rate is highly dependent on the particular order in which the nodes send messages). Second,
DBF can be shown to be fairly robust in the presence of a time-varying topology (which
may include link failures and discoveries in addition to changing link costs). Specifically,
it can be proven that a distributed, asynchronous version of the DBF algorithm presented
above converges to the correct SPR solution, in finite time, as long as no new topological
changes occur after some time t0, and as long as the network remains connected.1 In
practice, this means that if the rate of topological change is much less than the rate at which
DBF converges, then overall, the network will almost always route data along the correct
SPR routes. For an expanded discussion of DBF, we refer the reader to (Steenstrup 1995,
Chapter 3), which discusses several variants of DBF designed to ensure faster convergence
time, and (Bertsekas and Gallager 1992), which provides a rigorous mathematical proof of
the convergence of asynchronous DBF in a connected network that incurs link failures.

Link failures and routing loops We describe routing loops, a phenomenon that occurs in
the distributed algorithms discussed above. A routing loop is a network failure in which
packets are routed in a cyclical erroneous pattern among certain nodes rather than arriving
at the destination. Such loops may persist for a finite duration (this can occur in both DVR
and LSR algorithms) or an infinite duration (this can occur in some DVR algorithms). The
onset of such behavior is typically caused by the failure of a link. We will use DBF to
illustrate these concepts.

Finite duration Consider the network shown in Figure 11.5 with node 3 as the destination.
The routing table at each node created by DBF is shown in Table 11.1, and explained as
follows. After running for some time, DBF converges to the correct solution as shown

1If the network does not remain connected, then routing loops are possible, and convergence cannot be
guaranteed. Routing loops are a general point of concern in distributed algorithms, and are discussed next.
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Figure 11.5 A network. It is assumed that the arc (2, 3) fails at some time.

Table 11.1 Routing table for Figure 11.5 when the
destination node is 3 and for N > 2. The notation
(x, y) denotes that the estimated shortest path length
to 3 is y and the next hop node is x.

Update Node 1 Node 2 Node 3

Before link failure (2, 2) (3, 1) (−, 0)

At link failure (2, 2) (−,∞) (−, 0)

1 (2, 4) (1, 3) (−, 0)

2 (2, 6) (1, 5) (−, 0)

3 (2, 8) (1, 7) (−, 0)

.. .. .. ..
N0 (3, N) (1, N+1) (−, 0)

in the first row of the table. Now, suppose that arc (2, 3) fails. Consider the following
sequence of events: node 2 detects failure and sets its path distance to the destination to ∞
(see the second line of Table 11.1). Next, node 2 receives a periodic update message from
node 1 advertising a distance to the destination of 2 (units). Node 2, not realizing this path
is based on outdated information in node 1’s routing table, updates its own table to state
that it can reach the destination in a distance of 3 through node 1 (reflected in the third
row of Table 11.1). Node 2 now sends an update to 1 stating a distance to destination of 3.
Since node 1 realizes that its shortest hop to the destination is through node 2, it updates
its own table to reflect a revised distance to destination of 4. This process continues until,
eventually at an update time N0, the estimated path length exceeds N . At this point node 1
will correctly establish a route to the destination directly through node 3 and, after receiving
an update message from node 1, node 2 will follow suit. Such a process can take a long
time to converge (depending on the value of N ). Meanwhile, packets generated at nodes 1
or 2 bounce between the two nodes. However, assuming no overflow, they will eventually
arrive at their intended destination.

Infinite duration – the ‘count to infinity’ problem As an example of a loop of infinite
duration consider the network of Figure 11.6. Initially, DBF is run and the routing table
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Figure 11.6 A network graph. It is assumed that the arc (1, 2) fails at some time.

Table 11.2 Routing table for Figure 11.6 when the destina-
tion node is 3. The notation (x, y) denotes that the estimated
shortest path length to 3 is y and the next hop node is x.

Update Node 1 Node 2 Node 3 Node 4

Before link failure (−, 0) (1, 1) (2, 2) (2, 2)

At link failure (−, 0) (−,∞) (2, 2) (2, 2)

1 (−, 0) (4, 3) (2, 4) (2, 4)

2 (−, 0) (4, 5) (2, 6) (2, 6)

3 (−, 0) (4, 7) (2, 8) (2, 8)

4 (−, 0) (4, 9) (2, 10) (2, 10)

.. .. .. .. ..

for node 1 as the destination is given by the first row in Table 11.2. Now suppose that arc
(1, 2) fails. Consider the following sequence of events: (i) node 2 observes the failure and
updates its routing table, producing the second row of Table 11.2. (ii) Node 4 advertises
its (outdated) distance to destination of 2 to the network. This causes node 2 to update its
routing table entry to (4, 3). (iii) Node 2 advertises its distance to the network, this causes
both nodes 3 and 4 to update their distances to the destination since both nodes use node 2
as the next hop. This produces the third row. Suppose that node 3 advertises its distance.
No changes are made to the routing tables at nodes 1 or 2. Now, suppose that this sequence
continues, node 4 advertises, followed by node 2 and then by node 3. The full routing table
is given by Table 11.2. Packets generated at nodes 2,3, or 4 after the link failure bounce
around the network indefinitely, but fail to reach their destination. This phenomenon is
known as ‘counting to infinity’.

Possible remedies There are many possible remedies for looping in data networks. For
example, modifications to Bellman-Ford that are typically implemented include triggered
updates (in which any node which detects a link failure immediately sends this informa-
tion to its neighbors), bounding the maximum allowed distance to the destination, split
horizon and split horizon with poisoned reverse (Leon-Garcia and Widjaja 2000, p. 496).
Such techniques are useful, but each can be foiled. Further, such schemes require far too
much overhead in the form of control messages and loop detection algorithms to be used
in networks where link failures are common (e.g., wireless networks).
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11.2.3 Adaptive Shortest Path Routing

The static shortest path routing approach described so far lacks certain features of generally
optimal routing schemes. It does not take into account the arrival rate of packets at various
nodes or the capacity of various links in the network. As a result, it cannot adapt to
congestion in network. An approach that partially addresses these issues is given by adaptive
shortest path routing (ASPR).

The premise of ASPR is to measure the amount of traffic crossing each link in the net-
work during a given time interval, and then to assign a link cost in the next time interval that
reflects this measurement. More congested links in a given interval are relabeled with larger
link costs in the next interval, while less congested links are relabeled with smaller costs. By
increasing the link cost of a congested link, it is less likely to be used in the next interval.
Similarly, increasing the link cost of a uncongested link makes it more likely to be used in
the next interval. In a properly designed instance of ASPR, congestion is spread out evenly
over the network, ensuring that average congestion (and delay) are kept to a minimum.

Although ASPR can be useful in some settings, it may be expected that such a strategy
can cause oscillation in the assigned routes, as ‘heavily congested’ links are rotated around
the network with each update. Indeed, ASPR can increase the congestion in the network,
significantly in some cases! This happens when a cluster of close-by links in the network go
unused in a given interval. Sensing this under-utilization, many routes may simultaneously
use this set of (previously under-utilized) links in the next interval. Thus, ASPR will result
in a strategy where many orutes contend for the same few links in each interval (although
the set of links may rotate with time). This problem is especially true when all nodes
perform updates at the same set of decision epochs.

To lessen the likelihood of unstable behavior two techniques can be used: (i) nodes can
perform link updates out of sync with each other (in which case congestion adaption is
done gradually), and/or (ii) a dampening (i.e., constant) factor can be added to link lengths.
However, even when ASPR works well, it is missing elements of a truly robust protocol:
(i) it fails to formally address the feedback effect of the current routes on congestion levels,
and (ii) link capacity and the delay of a link as a function of its congestion level are not
explicit parts of the formulation. A survey of ASPR routing issues and literature is given
in (McDonald 1997). Theoretical justification for the near-optimality of ASPR routing in
certain types of networks is given in (Gafni and Bertsekas 1987).

11.2.4 Other Approaches

We briefly describe two other popular classes of routing algorithms that do not fall within the
shortest path framework. In flow model routing (Kleinrock 1964), (Bertsekas and Gallager
1992, Sections 5.4-5.7), models for link delay as a function of link congestion (traffic
level) and capacity are used. The feedback effect of a particular route assignment on other
routes is taken into account and packets from a given origin-destination pair may be split
among several different paths in order to minimize the routing metric (which seeks to
capture the average delay of packets in the network). Although such a characterization is
valuable, solutions to the ‘optimal’ routing problem under this formulation are not as easily
implementable as in SPR, especially for large networks.
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In deflection routing (Steenstrup 1995, Chapter 9), the source node forwards a packet
out a preferred link. However, if the link is congested or full, the packet is immediately
rerouted (or deflected) to another preassigned link. The process continues as the packet is
routed to the destination. Deflection routing is designed for scenarios where nodes have
small or nonexistent buffers. Upon receiving a packet either forwards it or immediately
deflects it to a free link (thus, the original name of ‘hot potato’ routing). This scheme tends
to work well for networks with balanced and invariant topologies.

11.3 SPR for Mobile Wireless Networks

Routing for mobile wireless networks is a broad area. Overview papers and chapters can
be found in (Akkaya and Younis 2005), (Al-Karaki and Kamal 2004), (Marina and Das
2005), and (Kowalik and Davis 2006). SPR seems well adapted to the wireless problem by
providing both a mathematical basis for routing algorithms and an implementable structure.
However, wireless networks present new challenges not accounted for in the development
of Section 11.2. First, routing algorithms in wireless networks must be energy-efficient,
and as a related issue, they should prolong the system lifetime. Second, routing algorithms
must contain a medium access control (MAC) that limits the interference level at non-
participatory nodes caused by transmissions at nearby nodes. This is particularly important
when many nodes route unrelated data simultaneously in the network. Third, wireless
networks may have a rapidly time-varying topology due to mobility and/or the time-varying
nature of the communications channel. Thus, routing algorithms must be able to handle
scenarios where links may fail and new links may be formed.

In parallel to Section 11.2, we first discuss broadcasting approaches before describing
SPR techniques. For SPR, it will be seen that there are two fundamentally different views,
known as proactive and reactive routing, on how to route messages in wireless networks.

11.3.1 Broadcast Methods

Pure flooding is an inappropriate routing strategy for large wireless networks due to the
excessive interference levels that it generates, and due to the vast amounts of energy
consumed by redundant and useless transmissions. We start by surveying refined flooding
methods designed for the wireless environment. These methods seek to eliminate some of
the unnecessary transmissions of pure flooding.

Suppose our goal is to reach all nodes connected to the source with a minimum sum
cost (which, for simplicity, we take to be power). A seemingly reasonable approach would
be to apply the MWST theory and algorithms exactly as discussed for wireline networks in
Section 11.2.1. However, the MWST approach ignores the multiaccess nature of wireless
communications. When wireless packets are transmitted, many nodes hear the transmission.
Therefore, a transmission that requires more energy to connect the source to a particular
node, say D, may also simultaneously connect several destination nodes to the source, and
cannot be ruled out a priori, as is the case for MWST. In (Wieselthier et al. 2000), the
authors propose the Broadcast Incremental Power Algorithm (BIP) as a MWST-inspired
algorithm that captures this key feature of the wireless medium. BIP is an iterative algo-
rithm. Suppose that some subset of the final broadcast tree has been determined. The
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main idea of BIP is to now add a single new node by defining link costs based on
the additional power required to connect each possible new node to the broadcast tree.
Such a definition of link costs is adaptive, changing after each iteration of the algorithm.
However, standard MWST algorithms can be run at each iteration. Further analysis of
BIP and variants can be found in (Wan et al. 2002; Wan et al. 2004), and the references
therein.

A different, probabilistic, approach to efficient flooding is Gossiping (Haas et al. 2002).
Gossiping operates as flooding except that when a node would normally relay a message
in flooding, it relays it only with probability p in gossiping. Using arguments from perco-
lation theory, it is shown that such a strategy can have a high probability of successfully
connecting source and destination in large networks, and that such strategies, with some
straightforward modifications, adapt well to smaller networks as well.

A still more efficient routing algorithm was derived using the theory of random walks
in (Servetto and Barrenechea 2002). The proposed routing scheme is similar to that of
gossiping except that instead of forwarding a message to all neighbors with probability p,
a node forwards messages only to neighbors closer to the destination than itself according
to some probability distribution on those neighbors (unlike gossiping, each message is for-
warded to exactly one neighbor with probability 1). Compared to flooding (and gossiping)
this method concentrates packet forwarding on short routes between source and destina-
tion, and secondly, it evenly balances network traffic on all nodes towards the destination.
For a standard rectangular network topology closed form expressions can be derived for
the optimal forwarding probabilities to evenly balance network traffic. It is shown that the
random walk strategy results in a much better load distribution than gossiping. Also, such
strategies perform well even when the topology is time varying.

Two more intelligent flooding strategies were presented in (Ni et al. 1999) and (Kozat
et al. 2001). In (Ni et al. 1999), a delayed-flooding approach is proposed where, upon
receipt of a flooded message, a node n0 waits idly for a certain amount of time, T . If
n0 hears its neighbors rebroadcast the message more than N times in this interval, then
it chooses not to rebroadcast. Clearly, the parameters T and N can be optimized for a
given network topology. In (Kozat et al. 2001) a set of forwarding nodes are identified
(at low overhead) that are used to flood messages. Clearly, these schemes result in fewer
transmissions than pure flooding.

11.3.2 Shortest Path Routing

Shortest Path routing remains popular for wireless networks. However, implementations
of SPR have to address the new features of wireless networks discussed above. A central
question is: does a node need to store routing information to all possible destinations nodes,
or only those likely to be used in the near future? Two broad classes of protocols have
been designed to address this issue, as we discuss below.

In proactive protocols , each network node stores information on routes to all possible
destinations at all times. The advantage of this approach is that when a routing request is
needed, it can be initiated with minimal delay. The disadvantage is the overhead in the form
of control messages that are required to establish and maintain all routes, even those that
are used infrequently and/or subject to frequent failure. Extra control messages consume
battery power and cause interference, and therefore reduce system lifetime.
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In reactive protocols , routes are established on an as-needed basis (these protocols are
also known as on-demand protocols). This approach requires less control information, par-
ticularly when the network topology is rapidly changing or when the data bursty or directed
to only a small subset of the network nodes that are unknown in advance. The disadvan-
tage of such an approach is that route requests can experience a large delay before being
propagated from the source node, as a route to the destination has to first be determined.

Proactive routing

In proactive routing each node maintains routes between itself and all possible destinations
in the network. Since this is the same approach as taken in the wireline case, many proactive
algorithms are modifications of the distance vector and link state approaches described in
Section 11.2.2. Below, we describe a well-known example of each type of protocol.

Distance vector protocols Destination Sequenced Distance Vector (DSDV) (Perkins and
Bhagwat 1994) was among the first DVR protocols for wireless networks. Based on the
idea of DBF, the main feature of DSDV is that it avoids the count to infinity problem
illustrated in Section 11.2.2, while requiring minimal internodal coordination or overhead
(Perkins and Royer 1999). It can best be understood as a generalization of DBF. In DBF,
each node keeps a triplet of information items for each destination, (D, DI, N), where D

is the destination node, DI is the (estimated) shortest path distance to D, and N is the
next hop node towards D. In DSDV, each node maintains a quadruple, (D, DI, N, SEQ)

where D, DI , and N are as before, and SEQ is monotonically increasing sequence number
issued by the destination node as part of its periodically issued status message. Whenever an
intermediate node chooses to update its own routing table based on such a status message it
also stores the original sequence number issued by the destination. Further, an intermediate
node chooses to incorporate the update message only if at least one of the following
conditions holds: (i) the intermediate node does not already have a table entry for the
destination, (ii) the update message contains a newer sequence number than the currently
stored information, or (iii) the sequence number is the same as in the table, but the update
message contains a shorter route. The sequence number allows each intermediary node
to know at what relative time an update message was issued by the destination. This is
the mechanism by which the count to infinity problem is avoided. Other popular distance
vector protocols for wireless networks include WIRP (Garcia-Luna-Aceves et al. 1997),
ADV (Boppana and Konduru 2001), WRP (Murthy and Garcia-Luna-Aceves 1996), and
PRNET (Jubin and Tornow 1987).

Link state protocols For implementation in a wireless network, the size and frequency of
link states updates (LSUs) must be reduced relative to that of traditional algorithms such
as OSPF (see Section 11.2.2). Optimized Link State Routing (OLSR) (Clausen et al. 2003)
is a modified version of OSPF that seeks to accomplish this goal. In OLSR a certain subset
of nodes in the network are designated ‘multi-point relays’. These nodes are responsible
for forwarding link state updates, which contain information on only some of the network
nodes. Clearly, the number and size of LSUs have been reduced. In this scheme each node
has only partial topological information of the network. However, if correctly designed,
this information is still sufficient for each node to recreate the entire topology graph. From
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this information, each node can determine shortest path routes via Dijkstra’s algorithm. A
mathematically framed comparison of the efficiency of OLSR to OSPF can be found in
(Adjih et al. 2003).

Reactive (on-demand) routing

In reactive routing, routes are established on an as-needed basis. One of the earliest forms
was proposed in (Corson and Ephremides 1995). Here, we discuss an archetypical proto-
col known as Dynamic Source Routing (DSR) (Johnson and Maltz 1996), (Perkins 2001,
Chapter 5). DSR makes heavy use of two concepts: (i) source routing, in which the origin
node knows the entire route to destination and embeds this information into the packet (in
this way, intermediary nodes forward packets without having to make their own routing
decisions), and (ii) route caches, in which each node maintains a list of routes to those
destinations which it has ‘discovered’. The protocol itself has two modes of operation route
discovery and route maintenance, which we now describe.

Route discovery is used when a source node needs to forward a packet to a particular
destination, but does not have a corresponding route stored in its cache. In this case the
source node floods a query packet through the network. Intermediary nodes append their
own identity to the query and forward it, unless they are either the destination node, or
have a route for the destination stored in their cache. Nodes which do not forward the query
send a reply message back to the source. (This is also done using source routing, which
is possible since every packet traversing the network has embedded its route traveled so
far; that is, the route for the reply packet is simply reversed.) When the reply arrives back
the source, this newly ‘discovered’ route is stored in the source’s cache and routing can
commence.

Route maintenance is used when a previously discovered route is traversed and it is
learned that there has been a link failure. In this case an error packet is generated and,
through source routing, is sent back towards the source along the same route that it originally
traversed. At each intermediate node along the route and at the source, the corresponding
entry is erased from the cache (thus, the route is appropriately purged). In order to reach
the destination the source must either use an alternate route also stored in its cache, or
initiate a new route discovery.

One drawback of using source routing is that DSR suffers from poor scalability. As the
network becomes larger, so does the size of the embedded route information in each packet.
Secondly, DSR does not have a preemptive way of purging outdated routes. Because DSR
relies on advertising mechanisms, incorrect information tends to propagate throughout the
network. It was shown in (Perkins et al. 2001) that such overhead can have a significant
impact on the performance of DSR. Several variants of DSR have been proposed to address
these issues. Other well-known reactive protocols include Ad hoc On-demand Distance
Vector (AODV) (Perkins and Royer 1999), the Temporally Ordered Routing Algorithm
(TORA) (Park and Corson 1997), and Signal Stability Routing (SSR) (Dube et al. 1997).

11.3.3 Other Approaches

We briefly mention some other classes of routing algorithms that are widely cited for wire-
less networks, but that may not fit within the shortest path framework. The first approach is
known as a Hybrid Routing . Routing algorithms in this class incorporate elements of both



294 APPLICATION DEPENDENT SHORTEST PATH ROUTING

proactive and reactive protocols. A well-known example of such a protocol is the Zone
Routing Protocol (ZRP) (Haas et al. 2002). A second approach is known as Location Based
Routing (also as Geographic Routing), in which each node knows the physical location of
other nodes in the nodes in the network (e.g., through Global Positioning System (GPS)
data). When a node wants to send information to a given destination it simply forwards its
information to the neighbor closest to the destination. The process continues until the mes-
sage reaches the destination. Note that once locations for all nodes have been obtained, this
schemes requires very little overhead, and it also has the potential to scale well. Examples
include (Witt and Turau 2005) and (Basagni et al. 1998).

Backpressure routing and its variants are based on work originally proposed in (Tassi-
ulas and Ephremides 1992). The idea is to choose the routing algorithm to maximize the
stability region of the network (where stability is determined in terms of permissible arrival
rates of data to network nodes). The optimal routing policy was found, and was seen to
select a particular flow at the source node, and route it to the particular recipient node, in a
way that maximizes the differential backlog. Although not originally proposed as an SPR
algorithm, extensions have been made which incorporate SPR and other routing techniques
(e.g., see (Neely et al. 2005)).

11.4 SPR for Ad-Hoc Sensor Networks

We now depart significantly from the types of networks considered thus far by focusing on
ad-hoc wireless sensor networks. We will continue to use the shortest path methodology for
such networks. First, we discuss the novel features of ad-hoc sensor networks and survey
current SPR algorithms in Section 11.4.1. We show that the current approaches are largely
application independent. In Section 11.4.2 we argue that, in contrast to previous networks,
application dependent design of routing protocols is both appropriate and necessary. To
address this issue, we present a detailed example of how application dependent SPR can
be derived and implemented to improve routing performance in sensor networks in Section
11.4.3.

11.4.1 A Short Survey of Current Protocols

We start with a brief summary of routing protocols that were developed, or that are appro-
priate, for sensor networks. Like conventional wireless networks, ad-hoc wireless sensor
networks are severely energy constrained, and experience an unpredictable and time-varying
topology (due to low complexity, low power sensor nodes that may be prone to failure,
and/or a mobile deployment environment). Not all of the works surveyed below are defined
purely as shortest path algorithms. However, common to all is the choice of a link metric
that measures the goodness of a given route, the minimization of which is assumed to
provide improved application performance given these constraints. There is a plethora of
works which are based upon the ideas presented here. We have omitted these for brevity.

It is important to realize that the routing algorithms discussed below are designed
based on, at best, a vague notion of what constitutes ‘good’ application performance (less
delay, more throughput, etc.). In no case is the true application performance metric (e.g.,
minimization of the bit error rate, minimization of estimation error, maximization of the
detection performance, etc.) stated mathematically as a function of an arbitrarily chosen
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route. Thus, there is no convenient way to maximize application performance over all routes
satisfying the relevant network constraints. We will refer to these approaches as application
independent.

Two immediate strategies for routing in sensor networks are minimum energy routing
(Rodoplu and Meng 1998), (Meng and Rodoplu 1998), and (Ettus 1998), in which the link
metric is the energy required to send a wireless transmission over the link, and minimum
hop routing , in which the link metric is constant for all links. However, neither approach
is well suited to sensor networks. The first approach conserves energy, and therefore,
is often thought to prolong network lifetime. However, such a scheme actually depletes
energy in certain frequently used routes. This leads to premature link failure and network
partitioning. The end result is reduced system lifetime compared to schemes which attempt
to homogenize energy use throughout the network, or which take into account residual
battery life. Similarly, minimum hop routing is often thought to minimize the end-to-end
routing delay in a network. In reality, such an approach also tends to use the same subset
of links to transmit the network’s traffic. This leads to congested routes which in turn lead
to relatively long routing delays. Again, strategies that homogenize traffic throughout the
network will have better delay characteristics. Some more sophisticated approaches follow.

First, we describe approaches which address the system lifetime constraint. In (Shah
and Rabaey 2002), the premature burnout of ‘preferred routes’ is addressed by determining
the set of N routes in the network with the least energy usage, and then using each of these
routes with a frequency (or probability) that is related to the residual lifetime of the nodes
in the route. In (Barrett et al. 2003), a protocol is proposed that forwards each message
probabilistically to a single neighbor, where the probability is chosen as a function of
the number of shortest path routes to the destination on which the neighbor lies. Another
approach to increasing lifetime is given in (Singh et al. 1998), where a link metric is
proposed that is an arbitrary function of the energy expended by the transmitting node thus
far (clearly related to the residual battery power in the node). A similar residual battery
life metric is used in (Chang and Tassiulas 1999), and it is seen that an optimal approach
evenly distributes power consumption throughout the network. Another residual battery
metric was proposed in (Toh 2001). Specifically, conditional max-min battery capacity
routing was proposed in which a shortest path route to the destination is selected subject
to the constraint that all nodes in the path have a battery power above a certain threshold.
In both (Michail and Ephremides 2000) and (Aslam et al. 2003), link metrics are proposed
that balance choosing a route that entails minimum energy consumption with choosing a
route that has sufficiently high residual energy.

Second, we cite approaches which address the unpredictable and time-varying topol-
ogy of sensor networks. In (Gerharz et al. 2002) and (Gerharz et al. 2003), several link
metrics are proposed which encourage the formation of routes comprised only of ‘sta-
ble’ links (those which are less likely to fluctuate in an out of service). In (De Couto et
al. 2003), stable links are chosen by using shortest path routing with a link metric that
measures the expected number of transmissions needed to traverse a link (this number
generally exceeds one due to the probabilistic unreliability of a link). In (Lundgren et al.
2002), (Chin et al. 2002), and (Dube et al. 1997), the time-varying topology is addressed
by omitting from consideration links whose reliability falls below a certain threshold.
SPR can then be run on the remaining network to find routes (if such a network remains
connected).
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11.4.2 An Argument for Application Dependent Design

The layered architecture used in most data networks dictates that routing (at the network
layer) be designed independently of the application performance (at application layer).
Such an approach provides modularity at the expense of efficiency. This paradigm has been
reasonably successful in wireline and some wireless networks. Modularity simplifies design
and implementation via a divide and conquer approach. As a result, new applications can be
developed independently of the medium access and routing strategies that are specified at
lower layers, and new physical layer techniques can be implemented without changing upper
layer implementations. Perhaps the most remarkable feature of the layered architecture is
that it makes the network design scalable. A classic example is the Internet, which has
grown from a handful of nodes in the ARPAnet to hundreds of millions of nodes today.

However, not all networks should be constrained to fit this paradigm. Ad-hoc sensor
networks are designed for specific applications. In contrast to the Internet, i.e., a general-
purpose traffic carrying network, sensor networks do not exist to serve individual nodes.
Consider, for example, a sensor network deployed for target detection and tracking, environ-
mental monitoring, or the detection of a specific chemical compound. In these applications,
network performance should not be measured by general purpose metrics such as the data
rate at the link level or by the throughput over the network. Conventional performance
metrics such as throughput and delay do not necessarily translate to a performance mea-
sure suitable for the application. For application specific networks, and sensor networks in
particular, performance should be measured instead by application defined metrics such as
the miss detection and false alarm rates, the network lifetime for performing these tasks,
and the energy efficiency of target detection, tracking, and estimation.

11.4.3 Application Dependent SPR: An Illustrative Example

The basic challenge in designing application specific routing using the SPR methodology is
the determination of a link metric that captures the application performance (in such a way
that minimization of the sum of link metrics is equivalent to maximization of application
performance), while also accounting for network constraints. To show that such a link
metric can indeed be derived in some cases, we provide an illustrative example in which
we seek to maximize the detection performance of an ad hoc network subject to a constraint
on energy consumption.

The development in this section assumes that the reader has a basic knowledge of binary
hypothesis testing and detection theory (Poor 1994). The reader unfamiliar with these
concepts may skip Section 11.4.3, making note of the application performance measure
(11.7) and energy consumption expression (11.8), without loss of continuity. The ideas
presented in this section are based on (Sung et al. 2006) and (Sung et al. 2007).

Shown in Figure 11.7 is a large network with geographically distributed sensors, each
taking measurements of a certain phenomenon. We assume that there is a fusion center (or
gateway node) that is responsible for collecting data from sensors and drawing inferences
from that data. We are interested in the detection of a spatially correlated Gaussian random
signal field. The two hypotheses are{ H0 : independent and identically distributed (IID) Gaussian noise,

H1 : correlated Gaussian random field observed in IID Gaussian noise.
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Figure 11.7 Routing for a detection application. Reprinted with permission from (Sung
et al. 2007). Ò 2007 IEEE.

We assume that the sensors have already been placed in an arbitrary configuration
(consistent with the notion of an ad-hoc network) and that the correlation structure of the
Gaussian signal field is known. Later we will impose a specific structure on the correlation
to facilitate aspects of the analysis.

Sensors have limited transmission range, and they have to deliver their data to the fusion
center over certain routes. Obviously, the more data that is collected, the more accurate the
inferences drawn about the phenomenon at the fusion center. What compounds the problem
is the severe energy constraint on sensor communications. Each transmission will cost a
certain amount of energy which will depend on the distance between the transmitter and
the receiver and also on the amount of data that needs to be delivered. It is this tradeoff
between performance and energy consumption that demands application dependent design.

There are numerous network-related problems associated with this application which
are beyond the scope of this chapter. For example, the effect of transmission interference
and the design of a carefully constructed MAC and PHY layer would be fundamental to a
real-world implementation of the proposed design, but are ignored. Here, we are interested
in determining the route over which data collection should be performed. The problem
would not be interesting if, under hypothesis H1, the sensor measurements of the signal
field were independent, i.e., the conditionally IID model. In this case, each sensor pro-
vides equally valuable information conditioned on the observations of previously sampled
sensors, and the ‘optimal’ routing strategy would be to simply collect data from sensors
closest to the fusion center, in order to save transmission energy. However, routing becomes
a non-trivial issue when sensor measurements are not IID under H1. In this case, sensors
further away from previously sampled sensors may have more valuable observations of
the signal field (it may be that less correlated observations are more valuable). However,
this data can only be collected at the expense of using more transmission energy. Hence,
a tradeoff emerges between detection performance and energy consumption. Furthermore,
the measurements of sensor nodes are imperfect, and it is necessary to consider this mea-
surement inaccuracy and aggregate the measurements of multiple sensors for the final
decision.
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Consider a clock-driven application in which the fusion center issues regularly scheduled
(possibly random) data collections, as depicted in Figure 11.7. For any fixed route, we
will assume that data is collected along all nodes along the route. We highlight three
potential routes R1,R2 and R3, and ask, which route is preferred for detection? There
are eight potential observations along R1 and six along R2. But measurements along R1

are more correlated than those along R2 because nodes are closer to each other. Thus the
‘information’ content through R1 may not be as great as that through R2. Now R3 has
the same number of nodes as R2, but the route length is shorter. The energy consumed
in the collection through R3, conceivably, is lower than that through R2. But the limited
coverage of R3 may result in a loss of performance.

Intuitive concepts alone, e.g., ‘closely-spaced nodes sometimes provide less informa-
tion’ and ‘collections over widely separated distances require more energy’, will not carry
us far in determining the optimal routes for the tradeoffs described above. To develop
optimized application dependent routing, we will need an analytical characterization of per-
formance which can lead to the right tradeoff between detection performance and energy
consumption.

Chernoff routing, Schweppe’s recursion, and Kalman aggregation

Unfortunately, there is no simple analytic expression that describes detection performance
along a given route or the contribution of a given link to the overall detection performance.
However, using some well-motivated approximations, we show that there does indeed
exist a link metric in our case; one that quantifies the contribution of each link to detection
performance in such a way that the sum of link metrics along a route is proportional
to the detection performance of the route. Thus, routing can be greatly simplified using
SPR techniques. Our tool is the use of detection performance bounds that are functions of
network parameters such as the distance between a pair of nodes and signal parameters
such as signal-to-noise ratio (SNR) and signal field correlation strength.

Chernoff routing

To find a suitable bound, we digress briefly into the theory of large deviations (Dembo
and Zeitouni 1993). The Chernoff bound (Poor 1994) is a well known upper bound on the
probability of detection error. Consider the simple binary hypotheses Hi : Yk ∼ pi(y), i ∈
{0, 1}, for k = 1, 2, . . . , n. Define Y

�= [Y1, . . . Yn] and let Pi(Y ) denote the probability
distribution of Y under Hi , i ∈ {0, 1}. The optimal detector for this test (under either the
Bayesian or Neyman-Pearson formulation) compares the log-likelihood ratio

l(Y )
�= log

P1(Y )

P0(Y )

≥H1

<H0

τ

to an appropriate threshold value τ . The false alarm probability can be upper bounded by

Pr(l(Y ) > τ |H0) < exp{−�(τ)}
where the so-called error exponent �(τ) is the Fenchel-Legendre transform of the cumulant

generating function µ(s)
�= log E{esl(Y )|H0)}:

�(τ)
�= sup

s>0
{sτ − µ(s)}.
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When we have IID measurements, the error exponent �(τ) and the log-likelihood ratio are
additive, namely,

l(Y1, . . . , Yn) =
∑

k

l(Yk),

and the corresponding Chernoff bound on the false-alarm probability has the form

Pr(l(Y ) > τ |H0) < exp{−n�1(τ )},

where �1(τ ) is the Fenchel-Legendre transform of log E{es l(Y1)|H0)}. It is this additivity
that makes it possible to obtain a link metric that captures the desired performance measure
in our case. Additionally, the Chernoff bound is tight when n is large.

We have a similar lower bound on the false alarm probability that states

Pr(l(Y1, . . . , Yn) > τ |H0) = exp{−n�1(τ ) + o(n)},

where o(n) is such that limn→∞ o(n)/n = 0. Here, we interpret �1(τ ) as the decay rate of
the false alarm probability. In fact, �1(τ ) can be shown to be the largest possible decay
rate

�1(τ ) = lim
n→∞

1

n
log Pr(l(Y1, . . . , Yn) > τ |H0).

Under the Bayesian setup, the two types of detection-related error probabilities, the probabil-
ity of false alarm and miss detection, are balanced by the priors of the two hypotheses. How-
ever, the largest decay rate for the average error probability, Pe = Pr(H0) Pr(Error|H0) +
Pr(H1) Pr(Error|H1), does not depend on prior probabilities, and is given by the Chernoff
information defined as

C
�= �1(0) = sup

s>0
{−µ(s)}. (11.4)

This concludes our digression.
By Chernoff routing we mean routing where the Chernoff information is used as a route

metric. For a fixed route, say R1 in Figure 11.7, we have a set of measurements {yi}. Note,
however, that yi’s are not IID, the Chernoff information for such a case is a function of
the distribution of l(y1, . . . , yn), which, in turn, is a function of the route. Denoting the
Chernoff information associated with a specific route R as C(R), Chernoff routing aims to
select a route that maximizes C(R). Denoting by E(R) the energy consumed when data
are routed through route R, we obtain an energy constrained form of Chernoff routing

max
R

C(R) subject to E(R) ≤ E . (11.5)

Link metric via innovations representation Although (11.5) captures the essence of opti-
mal routing subject to an energy constraint, it does not provide an implementable routing
protocol. To use SPR, we seek an additive link metric such that the accumulated value
of the link costs on R is proportional to the value of C(R). Unfortunately, the standard
expression of the Chernoff information for the Gaussian hypotheses is given in terms of
the eigenvalues of the covariance matrix of signal samples (Poor 1994), and does not allow
the decomposition of the overall performance into a sum of the incremental performance
gains at each link.
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The key to obtaining an additive link metric, as proposed in (Sung et al. 2005), is
the use of the innovations representation of the log-likelihood function (Schweppe 1965).
To understand this important step, we note that the Chernoff information associated with
yi is not additive because the log-likelihood function under H1 is not additive. We seek
innovations that are naturally independent. In the context of signal processing, this can often
be achieved using recursive techniques. The idea of using the innovations representation
to obtain the likelihood function recursively was first proposed by Schweppe (Schweppe
1965), and Schweppe’s recursion leads to the decomposition of Chernoff information into
an additive link metric.

For a fixed route R, assuming a Gaussian signal along the route, it is shown in (Sung
et al. 2005) that the Chernoff information C(R) is approximately equal to the sum of the
logarithm of the innovations variance Re,i (normalized by the measurement noise variance)
at each link, i.e.,

C(R) ≈
∑

i

Ci, Ci = 1

2
log

Re,i

σ 2
w

, (11.6)

at high SNR, where SNR is defined as the observational SNR at each sensor, σ 2
w is the

variance of measurement noise at each sensor, ŷi|i−1
�= E{yi |y0, . . . , yi−1} is the MMSE

estimate of yi given all upstream measurements, and Re,i
�= E{|yi − ŷi|i−1|2} is the MMSE

of the estimation process. When the random process is Markovian, the link metric is almost
memoryless. This crucial property makes it possible to use shortest path routing.

Next, we need to connect (11.6) to physical parameters such as the SNR, node spac-
ing, and field correlation. For the Gauss-Markov random field, we have the following
approximation (Sung et al. 2005)

Ci ≈ 1

2
log{SNR + 1 − (SNR − 1)e−2A�i }, (11.7)

where �i > 0 is the link length, and where A > 0 describes the correlation strength and is
the diffusion constant of the first order stochastic differential equation of the Gauss-Markov
model. Note that as A → ∞, the sensor observations approach statistical independence, and
that as A → 0, they become fully correlated.

A numerical evaluation of Ci as a function of link length �i provides useful insights.
Figure 11.8(a) shows the link metric as a function of link length �i . For SNR ≥ 1, the
metric is strictly increasing, strictly concave, bounded from above, and achieves a maximum
value of 1

2 log(1 + SNR). Thus, this value represents the maximum information that a link
can provide, and it is attained if the two sensors at each end of the link have independent
observations of the signal field (such may be the case if the sensor are spaced far enough
apart, or if the field is sufficiently weak in correlation).

We can now bring energy consumption into the framework. The energy used by a
particular node en route can represented by the sum of the processing energy Ep ≥ 0 and
transmission energy to the next node (e.g., see (Ephremides 2002)), i.e.,

Ei = Ep + Et,0�
ν
i , ν ≥ 2. (11.8)

where Et,0 ≥ 0 is a constant. Thus, the link efficiency can be defined as

η
�= Ci

Ei

.
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(a) (b)

Figure 11.8 Detection-based link metric: (a) link metric Ci as a function of link length
(A = 1) and (b) link efficiency as a function of length link (A = 1, SNR = 10 dB, ν = 2,
and Et,0 = 1). Reprinted with permission from (Sung et al. 2007). Ò 2007 IEEE.

Now, the tradeoff between having large Ci and low Ei becomes clear. Figure 11.8(b)
shows the detection efficiency for several values of processing energy Ep at each sensor.
The transmission energy at each link increases without bound as the link length increases.
However, note that the link efficiency peaks before decreasing with increasing link length.
Hence, we conclude that there is an optimal link length for optimal detection efficiency.

Definition of a link metric

We now define a link metric for shortest path routing which uses a modified version of Ci .
We propose to balance the detection performance with the energy consumed through the
following link metric

γi,j =
{

(Ei − λCi)
+
ε if nodes i and j are connected,

∞ otherwise,

where

(x)+ε �
{

x x > 0,

ε x ≤ 0,

and ε > 0 is a constant. Note that the cases λ → ∞ and λ → 0 correspond to the minimum-
hop and minimum-energy routing strategies, respectively.

We are now ready to provide numerical insights by considering a sensor network with
100 sensors placed on a circular field with radius one. Figure 11.9 shows the shortest-path
route from each node to the fusion center, which is located at the center of the field and
denoted by S, for each of the following routing strategies: minimum-hop routing, minimum-
energy routing, and Chernoff-routing2 (i.e., shortest path routing based on the metric (11.9)

2For simplicity, the Gauss-Markov model with diffusion constant A is used to describe the signal evolution
along the route.
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(a) (b) (c)

Figure 11.9 The shortest-path route from each node to the fusion center S for three
different routing strategies: (a) Minimum-hop routing, (b) Minimum-energy routing, and
(c) Chernoff-routing. Parameters are A = 1.6, λ = 0.01, SNR = 15 dB, ν = 2, N = 100,
Et,0 = 1, and Ep = 0. Reprinted with permission from (Sung et al. 2007). Ò 2007 IEEE.

with a nontrivial value of λ, i.e., 0 < λ < ∞). The differences in the route topology for
these schemes is evident. While minimum-hop routing results in a few, large, well-directed
hops to the fusion center, minimum-energy and Chernoff routing take smaller and more
scattered steps. This is because the transmission energy is a convex increasing function of
link length. The nodes which lead to major topological differences between the two latter
strategies are circled in the figure. As expected, Chernoff routing produces routes which
deviate from those of minimum-energy routing, and for which the detection performance
is presumably better.

Figure 11.10 Probability of detection error PDE averaged over all routes for the network
topology of Figure 11.9 under three different routing strategies (Pr(H0) = 0.75 and all
other parameters are the same as in Figure 11.9). Reprinted with permission from (Sung
et al. 2007) Ò 2007 IEEE.
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Figure 11.10 is a plot of the probability of detection error PDE for the topology shown
in the previous figure averaged over all N routes (i.e., PDE = 1

N

∑N
n=1 Pe(Rn) where Rn is

the optimal route from node n to the fusion center, determined separately for each routing
scheme). The probability that the signal field is absent is Pr(H0) = 0.75. Here, we used a
more realistic signal correlation for the detection, i.e., the actual correlation between two
sensors is a function of their Euclidean distance. That is, while the Chernoff-routes are
assigned assuming the Gauss-Markov model, the PDE is determined assuming the more
realistic model. Note that Chernoff-routing provides about a 40-percent reduction in the
PDE compared to minimum energy routing.

Figure 11.11 shows the average routing characteristics when SNR = 15 dB. Here, for
each value of the network size, the performance is averaged over realizations of the

(a) (b)

(c) (d)

Figure 11.11 Performance analysis of the three routing strategies in terms of the: (a)
average no. of hops, (b) total energy consumed, (c) accumulated Chernoff information, and
(d) average detection efficiency, and (d) average error probability (SNR = 15 dB, ν = 2,
λ = 0.01, A = 0.5). Reprinted with permission from (Sung et al. 2007). Ò 2007 IEEE.
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Figure 11.12 Probability of detection error PDE averaged over all routes and network
topology under three different routing strategies (SNR = 15 dB, ν = 2, λ = 0.01, A = 4,
Pr(H0) = 0.75). Reprinted with permission from (Sung et al. 2007). Ò 2007 IEEE.

network topology, (i.e., the sensor locations) to extract the fundamental network behav-
ior. Figure 11.11(a) shows the average number of hops from all potential sources to the
fusion center. As expected, the minimum-hop routing gives the smallest number of hops
while Chernoff routing provides the largest. Figure 11.11(b) shows the average energy
required by each scheme. It is seen that Chernoff routing requires almost the same as
the minimum-energy routing, providing the largest accumulated Chernoff information as
shown in Figure 11.11(c). In Figure 11.11(d) it is seen that Chernoff routing results in
the maximum detection efficiency as expected. Finally, Figure 11.12 shows the average
detection error probability as a function of the network size. Note that the network size can
be reduced significantly in the same area for the same error rate when we use Chernoff
routing over the conventional routing methods.

In closing this example, we reiterate that we have not addressed several network-related
issues, such as the effect of transmission interference, the potential for frequency reuse and
the design of a carefully constructed MAC and PHY layer, that would be fundamental to
a real-world implementation of the proposed design. Also of practical and perhaps theo-
retical interest is the effect of quantization on both the real-valued observations at each
sensor and the scalar quantities used for prediction and propagation in the Kalman filter
implementation of the proposed routing algorithm. Although some partial results exist for
general models, they have not yet been applied to the specific model used in the current
work. Such issues present opportunities for further research.
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11.5 Conclusion

In this chapter we have studied the evolution of shortest path routing (SPR) in data networks,
and argued that the next step in this evolution is the design of application dependent routing
schemes for ad-hoc wireless sensor networks.

In Section 11.2, we studied shortest path routing for wireline networks, including com-
mon algorithms and centralized and distributed implementations. We studied the strengths
and weaknesses of SPR in this context. In Section 11.3, we outlined the new issues in
wireless networks, and the SPR algorithms developed to address these. In Section 11.4,
we provided the main contribution of this chapter. We discussed SPR for ad-hoc wireless
sensor networks. First, we conducted a survey of routing protocols applicable to these net-
works. It was seen that the current protocols are designed based on general metrics such
as energy consumption and delay rather than on explicit application performance. We then
argued that, since ad-hoc sensor networks are application driven, their routing protocols
should be application dependent . We provided a detailed example of how such an applica-
tion dependent, distributed, SPR routing scheme can be constructed, and showed through
simulation that such an approach can indeed provide improved application performance.

11.6 A Short Review of Basic Graph Theory

Data networks are often modeled and analyzed using graph theory. In this chapter we
review basic graph theoretic concepts. A graph G = (N ,A) is defined by a finite non-
empty set of nodes N and a set of node pairs, or arcs , denoted A. For example, the graph
(N , A) = ({1, 2, 3, 4, 5}, {(1, 2), (2, 3), (1, 3), (4, 5)}) is depicted in Figure 11.13(a). We
require that if (a1, a2) ∈ A, then a1 �= a2. G specifies the connectivity of nodes, but not
their physical locations. Thus, Figure 11.13(a) represents an arbitrarily chosen arrangement.
We discuss undirected and directed graphs separately.

11.6.1 Undirected Graphs

In an undirected graph, the elements of A are unordered. For example, since the graph in
Figure 11.13(a) is undirected, it equivalently represents the networks (N , A) = ({1, 2, 3, 4 ,

1
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4

(a)

1

2

3

5

4

(b)

Figure 11.13 The graph G = (N ,A) = ({1, 2, 3, 4, 5}, {(1, 2), (2, 3), (1, 3), (4, 5)}) when
(a) G is undirected, (b) G is directed.
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5}, {(2, 1), (2, 3), (3, 1), (4, 5)}) and (N , A) = ({1, 2, 3, 4, 5}, {(2, 1), (3, 2), (3, 1),
(5, 4)}). There may be at most one arc between any pair of nodes. The terminology of
undirected graphs is given as follows: (i) A walk in G is a sequence of nodes (n1, . . . , n�)

such that (nk, nk+1) ∈ A, ∀k ∈ {1, . . . , � − 1}, (i-a) a path is a walk with no repeated nodes,
(i-b) a cycle is a walk with n1 = n�, � ≥ 3, and no repeated nodes other than n1 = n�, (ii)
G is connected if for each node i there is a path (n1 = i, . . . , n� = j) to each node j

(j �= i), (iii) G′ = (N ′,A′) is a subgraph of G = (N ,A) if G′ is a graph, N ′ ⊆ N , and
A′ ⊆ A, (iv) a tree is a connected graph that contains no cycles, and (iv-a) a spanning tree
of a graph G is a subgraph of G that is a tree and that includes all the nodes of G.

Spanning trees

We have the following proposition (Bertsekas and Gallager 1992).
Proposition. Let G = (N ,A) be a connected graph. Then G contains a spanning tree.
Furthermore, the following algorithm constructs a spanning tree G′ = (N ′,A′) from G:

1. Let N ′ = {n} where n ∈ N is chosen arbitrarily. Let A′ = ∅.

2. If N ′ = N , then stop (G′ = (N ′,A′) is a spanning tree). Otherwise, go to step 3.

3. Let (i, j) ∈ A be an arc with i ∈ N ′, j ∈ N − N ′. Update N ′ and A′ by

N ′ := N ′ ∪ {j}
A′ := A′ ∪ {(i, j)}

and go to step 2.

It is often desirable to work with the spanning tree of a network’s graph rather than
with the complete graph, G, when designing a routing strategy. Doing so removes the
redundancy and possible ambiguity caused by cycles while at the same time maintaining
the connectivity of G. We note that the spanning tree of G is not in general unique. In
Section 11.2.1 we discuss the minimum weight spanning tree of G, which is unique (under
mild conditions).

11.6.2 Directed Graphs

In a directed graph, or digraph, arcs are ordered and called directed arcs. For example, the
digraphs (N ,A) = ({1, 2, 3, 4, 5}, {(2, 1), (2, 3), (3, 1), (4, 5)}) and (N ,A) = ({1, 2, 3, 4,
5}, {(2, 1), (3, 2), (3, 1), (5, 4)}) are distinct. Graphically, a directed arc is drawn with an
arrow at the end point of each arc, as shown in Figure 11.13(b). We require that there
exists at most one directed arc from a node ni to a node nj (i �= j), and thus, that there
exist at most two directed arcs between ni and nj .

Much of the terminology for undirected graphs applies to directed graphs. Specifically,
for a digraph G = (N ,A) form the associated undirected graph GU = (NU ,AU), where
NU = N and (i, j) ∈ AU if (i, j) ∈ A, (j, i) ∈ A, or both. We say that (n1, . . . , n�) is a
walk, path, or cycle in G if it is walk, path, or cycle in GU . We say that G is connected if
GU is connected. Additionally, we introduce the following terminology: (n1, . . . , n�) is a
directed walk in G if (nk, nk+1) is a directed arc, ∀k ∈ {1, . . . , � − 1}. A directed path is
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directed walk with no repeated nodes, and a directed cycle is a directed walk with n1 = n�

for � ≥ 3 and no other repeated nodes. We say that G is strongly connected if for each pair
of nodes i and j there is a directed path from i to j .
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Data-Centric and Cooperative
MAC Protocols for Sensor
Networks

Yao-Win Hong and Pramod K. Varshney

12.1 Introduction

Medium Access Control (MAC), which is conventionally viewed as part of the Data Link
Layer in the OSI model, coordinates the use of a shared transmission medium in multiuser
systems and ensures reliable communication over interference-free channels for each user.
Due to the limited bandwidth, the fast-varying channels and the energy-costly transmissions
in wireless systems, it is particularly important to derive MAC protocols that efficiently
utilize the channel resources, e.g. bandwidth and energy. However, most MAC protocols
proposed in the literature (Bertsekas and Gallager 1991; Gummalla and Limb 2000) assume
that the users are independent of each other and that they are competing for the use of the
common transmission channel. System attributes such as throughput, delay, fairness and
reliability are often used as the objective functions when designing conventional MAC pro-
tocols. Unfortunately, these Quality-of-Service (QoS) attributes do not accurately describe
the performance of sensor applications and may lead to inefficient solutions for sensor
networks.

Due to the strict resource constraints of sensor networks, two properties of the system are
often exploited for designing sensor network MAC protocols: (1) the application-dependent
objectives and (3) the cooperative nature of the distributed sensors. Conventionally, wireless
MAC protocols do not exploit the cooperative and application-dependent properties and

Wireless Sensor Networks: Signal Processing and Communications Perspectives A. Swami, Q. Zhao, Y.-W. Hong and L. Tong
Ò 2007 John Wiley & Sons, Ltd
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focus on generic designs that are suitable for a wide variety of applications. While this is
useful in most applications, the attempt to serve a wide variety of applications causes a
loss in the efficiency of resource utilization. In fact, it is often necessary to compromise
the throughput, fairness or delay performances in order to save energy and bandwidth.

The key to designing efficient sensor MAC protocols is to recognize the fact that sensors
are cooperating instead of competing and that they are actually highly dependent users as
opposed to being independent in conventional systems. Therefore, the energy and bandwidth
resources can be allocated to optimize the application-dependent performance measures, eg.
the probability of detection errors of the estimation distortion, without fairness constraints.
Hence, new sensor network MAC protocols must be designed, taking into consideration
the application-specificity through cross-layered approaches and the advantages of coop-
erative/distributed signal processing. In this chapter, we introduce three classes of sensor
MAC protocols that exploit these properties: (1) the energy-efficient MAC protocols; (2)
the data-centric MAC protocols; and (3) the cooperative MAC protocols. The emphasis
will be on the third class of strategies, where the cooperation is used to improve both the
throughput of the user-oriented system, e.g. computer networks, and the performance of
data-centric systems that consists of correlated users, e.g. sensor networks.

In the first part of this chapter, we give a short survey of several popular sensor MAC
protocols that optimize the system parameters of conventional schemes, such as Carrier
Sensing Multiple Access (CSMA) or Time Division Multiple Access (TDMA), to achieve
energy-efficient communication in sensor networks. These strategies take into consideration
the power-saving mode of sensor devices and design adaptive sleep-wake patterns to avoid
the major sources of energy-waste, such as idle-listening, overhearing, protocol overhead,
and collision/interference. The performance in terms of throughput, delay or fairness are
compromised in exchange for energy efficiency. These strategies provide a generic design
for a variety of sensor network applications since the functionalities are confined within the
conventional layered architecture. However, the advantages of cooperation and application-
specificity were not exploited.

To derive application-dependent protocols, it is necessary to consider during the design
the statistical properties of the sensors’ data and the performance measures corresponding
to the application. Capitalizing on the high correlation between the sensors’ data, several
cross-layered MAC protocols have been proposed to reduce the redundant transmissions
made by the local sensors, and, thus, the total energy and bandwidth consumption is min-
imized. Three main approaches have been taken in the literature: (1) data aggregation; (2)
distributed source coding; and (3) spatial sampling. The savings are realized at the cost of
additional computations at the local sensors. However, these approaches have been consid-
ered promising due to the rapid advances of the sensor hardware technology as opposed to
the slow increase of the energy-density in batteries.

While many sensor MAC protocols have been designed to facilitate the signal process-
ing performed in the application-layer, the cooperative signal processing techniques that
can be used to enhance the networking and communication efficiency are often neglected.
The main focus of this chapter is to introduce the cooperative signal processing techniques
that can be used to improve the efficiency of resource utilization and the application-
specific performances. When the sensors are treated as independent users, MAC protocols
based on cooperative relaying have been proposed to improve the throughput of the sys-
tem. When the system capitalizes on the high dependency between sensors, cooperative
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signal processing can also be used to aggregate the sensors data and, thus, improve the
MAC performance. Two specific applications are used to illustrate these advantages: the data
gathering application and the decentralized detection and estimation application. In the first
application, the sink or data gathering node obtains an estimate of the sensors’ data under a
certain distortion constraint while, in the second application, the central processor obtains
the optimal decision or estimate of a common event based on the information provided by
the local sensors. With cooperation, we are able to closely integrate the functionalities of
different layers and achieve a better performance while utilizing less bandwidth or energy
resources.

In the following, we first give a short introduction to two basic MAC protocols and
extend these two approaches throughout this chapter.

12.2 Traditional Medium Access Control Protocols:
Random Access and Deterministic Scheduling

MAC protocols have been studied extensively for many years, ranging from wire-line
telephony networks to the internet to wireless ad hoc networks. The efficiency of the MAC
design is crucial for sensor networks due to the scarce energy and bandwidth resources
of these systems. Based on the assumption that the users in the system are transmitting
independent data and that they are competing for the use of the transmission channel,
MAC protocols are designed to allocate separate interference-free channels to each user.
This is typically achieved through either random access or deterministic scheduling. In
this section, we shall introduce briefly two specific protocols as an example for each of
these two approaches: the Carrier Sense Multiple Access (CSMA) protocol and the Time
Division Multiple Access (TDMA) protocol. In fact, most recent MAC protocols, including
those tailored for sensor network applications, were proposed based on these two strategies.

12.2.1 Carrier Sense Multiple Access (CSMA)

CSMA is one of the most popular choices for random access networks due to its simple
and effective design. In random access systems, users access the network based only on its
local information, e.g. the state of its queue or the state of the channel that it senses, which
is relatively random for other users in the network. As proposed in (Kleinrock and Tobagi
1975), in CSMA, each user, that has a message to transmit, first senses the channel to see
whether or not there is an on-going transmission from other users before it sends its own
message. This is done in an attempt to avoid collision with other users. However, CSMA
does not completely avoid collisions since two users may transmit simultaneously if they are
not able to sense each other’s transmissions, which may be caused by the large propagation
delay or signal attenuation between the users. When a collision occurs at the destination,
each transmitting user waits for a random backoff time before it makes an attempt to
transmit the message again. CSMA can be proposed with various backoff models and is
shown to achieve an efficiency of 50% ∼ 80% depending on the specifics of the protocol.

CSMA serves as the basis for many wireless MAC protocols. One widely adopted pro-
tocol is the Multiple Access with Collision Avoidance (MACA) protocol (Karn 1990) that
introduces a three-way handshake between the transmitter and receiver to solve
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Figure 12.1 Illustration of the hidden terminal problem and the three-way handshake.

the well-known hidden terminal problem present in conventional CSMA. Specifically, the
hidden terminal problem, as illustrated in Figure 12.1, occurs when two users, say user A

and user C, intend to transmit to a common user, e.g. user B. Since users A and C are
located outside the transmission range of each other, they are not able to sense each other’s
transmissions and, thus, cannot avoid collision through carrier sensing. In this case, we
say that user C is a hidden terminal of user A and, vice versa. The three-way handshake
proposed in MACA resolves this problem by having each user transmit a Request-To-Send
(RTS) message whenever it has a packet to send, indicating the destination and the length
of the intended data transmission. If the destination user successfully receives the RTS mes-
sage and has not completed a handshake previously with other nodes, it will then respond
with a Clear-To-Send (CTS) packet indicating that it is ready for reception. The source then
sends a DATA packet to the destination once the CTS is received. This process is also illus-
trated in Figure 12.1. The key to resolving the hidden terminal problem is to have all users
that overhear the RTS or CTS packets remain silent for a duration corresponding to the
length of the DATA packet. The MACA Wireless (MACAW) protocol (Bharghavan et al.
2004) further defines an ACK message in response to the DATA packet to take into account
the reliability of the wireless channel. In fact, CSMA serves as the basis of the Distributed
Coordination Function (DCF) in the contention period of the IEEE 802.11 standard, and
also the Contention Access Period (CAP) in the IEEE 802.15.4 standard (Callaway et al.
2002; Yedavalli and Krishnamachari 2006).

12.2.2 Time-Division Multiple Access (TDMA)

As opposed to CSMA, TDMA provides each user with interference-free transmission chan-
nels through deterministic scheduling. Specifically, TDMA divides the use of the channel
into fixed time slots and schedules the transmission of the active users among these time
slots based on the users’ demands and the total resources available. TDMA requires strict
synchronization among users and a centralized control to coordinate the use of the chan-
nels. Benefitting from the extra coordination, it is easier for TDMA to achieve the users’
QoS demands, e.g. the rate, delay or bit-error-rate (BER) requirements, while consuming
less resources. Even with the complexity of computing the optimal channel allocation and
the increase of control messages, it is often worth-while for delay-constrained or energy-
constrained applications. In addition, the coordination also allows TDMA to achieve better
throughput under heavy traffic loads. The IEEE 802.11 standard also employs deterministic
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Figure 12.2 Illustration of the preamble sampling method.

scheduling in the contention-free period through the defined Point Coordination Function
(PCF) to take account of applications with strict QoS constraints. This is also used in the
period of guaranteed time slots (GTS) in the IEEE 802.15.4 standard.

Both the CSMA and the TDMA protocols have been used as a basis for many sensor
network MAC protocols. Several of these methods are introduced in the following section
with the emphasis on energy efficiency.

12.3 Energy-Efficient MAC Protocols for Sensor
Networks

One of the primary challenges of designing sensor network MAC protocols is the limited
battery-lifetime of sensor devices. The large-scale deployment of sensors, possibly in hostile
environments, may prohibit the use of human maintenance and manual replacement of
batteries. Therefore, most existing sensor network MAC protocols focus on eliminating
the sources of energy-waste inherent in conventional protocols. However, the improvement
comes at the cost of reduced fairness, throughput and increased delay, which are fortunately
less relevant in sensor network applications. In the following, we introduce a few of these
protocols while a comprehensive study can be found in (Demirkol et al. 2006; Langendoen
and Halkes 2005).

The major sources of energy-waste in conventional MAC protocols, as identified in
(Langendoen and Halkes 2005; Ye et al. 2004), are idle-listening, overhearing, collisions,
protocol overheads, and over-emitting. The effect of these aspects differs according to the
application. For example, under low traffic rates, sensors consume most of their energy in
idle-listening since the transmission occurs sporadically. However, under high traffic rates,
the collisions and protocol overheads cause a significant increase in energy consumption.
We classify the sensor network MAC protocols as either random access or deterministic
scheduling. In fact, most of these strategies inherit the basic structures of the CSMA
and TDMA protocols introduced previously and impose an intelligent sleep-wake policy
to reduce the energy consumption of idle users. A tradeoff between energy efficiency
and adaptivity is observed between the two classes of strategies. Specifically, while ideal
coordination eliminates many sources of energy waste in deterministic scheduling protocols,
flexibility and adaptivity are lost when compared to random access protocols.

The random access approach

Taking the random access approach, El-Hoiydi (2002) and Hill and Culler (2002) pro-
posed sensor MAC protocols based on the well-known ALOHA and CSMA protocols,
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respectively. The proposed strategies reduce the energy waste, due to idle-listening and
overhearing, by having the users enter a sleep state when they becomes idle, i.e. when they
are neither transmitting nor receiving. To maintain communication, each user must wake
up periodically to listen for a packet intended for itself. If, in fact, such a packet is heard
during the wake-up period, the sensor will remain awake until the data packet is received.
To guarantee that a packet is always heard, each transmitter must emit a preamble at the
beginning of each data packet that is sufficiently long to cover at least one sleep-wake
period, as shown in Figure 12.2. This method, i.e. the preamble sampling method, was
implemented as part of the TinyOS in Mica sensors (Hill and Culler 2002). Under low
traffic load, the increased energy consumption for transmitting a long preamble is over-
come by the reduced idle-listening and overhearing. The WiseMAC protocol (El-Hoiydi
and Decotignie 2004) improves the performance of the preamble sampling scheme under
high traffic loads by reducing the length of the preambles. This is achieved by allowing
sensors to exchange their local sleep-wake cycles and by aligning each sensors’ transmis-
sions with the wake-up period of the corresponding receiver so that long preambles are no
longer necessary. However, this is achieved at the cost of additional coordination.

The deterministic scheduling approach

Although random access achieves good flexibility and low latency for applications with low
traffic loads, deterministic scheduling is actually the most effective way of eliminating the
sources of energy waste. In fact, with perfect scheduling, only one transmitter-receiver pair
would be active during each transmission period, therefore, reducing collision and elimi-
nating idle-listening and overhearing. However, deterministic TDMA scheduling1 requires
a large overhead in order to maintain accurate synchronization between sensors and to
exchange local information, such as the network topology and the communication pat-
tern. Moreover, the latency increases linearly with the total number of sensors sharing the
channel since TDMA assigns a separate time-slot to each transmitting sensor. This can be
improved by applying spatial channel reuse in TDMA-based sensor network MAC pro-
tocols. For example, (Arisha et al. 2002) and (Wu and Biswas 2005) applied TDMA in
cluster-based sensor networks where the channel (which is divided in either time, frequency
or code) is reused in different clusters. Furthermore, with the knowledge of the communi-
cation pattern, the sensors on the same packet delivery path can be scheduled to transmit
in order while having the sensors wake-up accordingly to match the transmit and receive
periods. As proposed in (Kulkarni and Arumugam 2004), this method reduces significantly
the delay but relies on the application-specific knowledge of the communication pattern
and loses the flexibility of random access systems.

The balanced approach

In sensor networks, it is equally important for the MAC designs to be adaptable to dynamic
changes of the environment as well as to achieve energy efficiency and to prolong the
network lifetime. To strike a balance between these two desired properties, several works
consider the case where sensors generate their sleep-wake patterns in a distributed fashion,

1Even though other channelization methods such as CDMA and FDMA are equally effective, most current
sensor devices utilize only a single frequency channel and cannot afford the complexities of a CDMA transceiver.
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so that adaptability is maintained, and exchange the local patterns with neighboring sensors
to coordinate the transmissions and to avoid the energy waste caused by idle-listening,
overhearing and over-emitting.

S-MAC (Ye et al. 2004) was proposed based on this approach, where each sensor
generates a local sleep-wake schedule and broadcasts the information to neighboring sensors
through the exchange of SYNC packets. If a sensor receives a sleep-wake schedule from
other sensors before it broadcasts its own, it will operate under the received schedule instead
of the one generated locally. As a result, the network will form virtual clusters that contain
sensors running a common sleep-wake schedule. To further guarantee connection between
neighboring clusters, sensors that receive multiple schedules must adopt a wake-up period
that is equal to the union of all schedules. For example, as shown in Figure 12.3, user
B receives the schedule from A, C and adopts a wake-up schedule that is the union of
both schedules. In S-MAC, the energy consumption is reduced by having sensors operate
under low duty cycles while the communication is maintained with synchronized wake-up
periods between neighboring sensors. The drawback is that the sleep-wake schedule must
be determined beforehand and cannot be adjusted adaptively for different traffic loads or
communication patterns.

To overcome this disadvantage, T-MAC (van Dam and Langendoen 2003) uses a time-
out mechanism to terminate the wake-up period and to mark the beginning of a sleep
period. Specifically, T-MAC allows a sensor to enter the sleep state if no activation event
occurs over a certain amount of time. The activation event may be the reception of data
on the radio, the sensing of a collision or the overhearing of RTS/CTS packets from
its neighbors etc. In this case, each sensor’s wake-up period is automatically adjusted to
match the communication pattern. Hence, the protocol achieves better throughput and delay
performances when compared to fixed scheduling policies that do not match accurately to
the dynamic changes of the communication pattern.

The common problem of MAC protocols that adopt sleep-wake policies is the large
latency that occurs when the receiver of a certain packet enters the sleep state before the
packet is transmitted. In this case, the transmitter must wait until the next wake-up period
before this packet can be sent. This is avoided when the sensors have full knowledge of the
communication pattern and are able to run a staggered wake-up pattern that matches the
sensor’s receive period to the transmission period of its upstream node. In fact, D-MAC (Lu
et al. 2004) utilizes such a staggered sleep-wake cycle for data gathering communication
patterns where packets are sent from the distributed sensors to a single sink node. The
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latency is significantly reduced for data gathering applications but may incur large delays
for applications that generate different communication patterns.

The protocols introduced in this section demonstrate improvements in energy efficiency
by making simple modifications to the conventional CSMA or TDMA protocols. The
advantage of these schemes is that they are readily implementable due to their similarity
with conventional protocols and that they can be adopted in different applications since they
are largely confined within the layered architecture. When the knowledge of the network
topology, the traffic load or the communication pattern is further exploited to optimize the
MAC, a significant improvement in energy efficiency, as well as throughput and delay,
can be achieved but a loss in performance is experienced if the strategies are applied to
non-matching applications. Nonetheless, for sensor networks that are strictly constrained
in resources, application-specific designs may be more important than generic designs that
are applicable for a large class of applications.

12.4 Data-Centric MAC Protocols for Sensor Networks

The advantage of application-specific designs can be exploited further by taking into consid-
eration the statistical knowledge of the sensors’ data. Namely, due to the high dependency
between the sensors, the traffic that goes through the network may be highly redundant and
may not contribute equally to the system objective. In this case, in order to save energy
and bandwidth, one should either combine the sensors’ data in a compressed form through
in-network processing or simply gather information only from the minimum number of
sensors that are sufficient to achieve the goal of the application. This leads to the class of
data-centric MAC protocols. Three approaches have been used to reduce the redundancy in
the sensors’ transmissions: data aggregation, distributed compression and spatial sampling
of correlated data. Although the data aggregation and distributed compression schemes are
done mostly in the application layer, the performance depends largely on the specific MAC
protocol and motivates the study of cross-layered protocols.

12.4.1 Data Aggregation

Data aggregation (Heinzelman et al. 1999; Intanagonwiwat et al. 2003; Rajagopalan and
Varshney 2006) is a general concept that aims at eliminating the redundancy of the messages
(and, thereby, reducing the number of transmissions and energy consumption) by jointly
processing the received messages and the local data at each sensor enroute to its destination.
The aggregation is generally performed sequentially and depends on the specific application
at hand. For example, in distributed detection systems (Varshney 1996; Viswanathan and
Varshney 1997), the aggregation at each sensor is achieved by performing local decision
fusion on the received messages and the local observations; in data gathering applications
where the goal is to obtain an estimate of the entire sensor field, joint compression of the
received messages and the local data (Scaglione and Servetto 2002) is used as the data
aggregation method; in decentralized optimization problems (Rabbat and Nowak 2005),
the aggregated data is generated by the incremental optimization of some cost function.

Most data aggregation methods do not depend on the MAC and can be imple-
mented on top of most existing protocols (Ditzel and Langendoen 2005; Krishana-
machari et al. 2002). However, the choice of MAC protocols may affect the aggregation
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performance in terms of the compression rate, the energy efficiency or the overall appli-
cation performance. Specifically, in distributed detection applications, the detection perfor-
mance can be improved if the energy and bandwidth resources are allocated with respect
to the reliability of the sensors’ observations (Lei et al. 2007), e.g. sensors with better reli-
ability should be allocated a larger bandwidth or transmission power. In the data gathering
application where the joint compression scheme (Scaglione and Servetto 2002) is used to
achieve aggregation, aggregation or compression should occur between highly correlated
sensors in order to reduce the total transmission energy. When data from less correlated
sensors are aggregated first, more energy must be expended to forward the message to
the next sensor due to the low compression rate. Therefore, the order of transmission
that is determined by both the MAC and the routing protocols is crucial to achieve good
aggregation efficiency.

12.4.2 Distributed Source Coding

Distributed source coding (DSC) for sensor networks, as described in (Pradhan et al. 2002;
Xiong et al. 2004), is based on the Slepian-Wolf (Slepian and Wolf 1973) theory which
shows that, by knowing only the joint statistics of the data at each sensor, the sensors are
able to compress their local data without the specific knowledge of the other sensors’ data
and achieves a compression rate equal to that of the centralized compression. The Slepian-
Wolf encoding scheme is illustrated in Figure 12.4(a). Here, two users transmit with rates
R1 and R2 to the destination where the messages are jointly decoded. Slepian-Wolf theory
proves that the users can perform lossless source coding with rates R1 and R2 that fall
within the shaded region of Figure 12.4(b). In particular, the DSC achieves the maximal
sum rate R1 + R2 = H(X, Y), which is the optimal compression obtained in the centralized
case. With DSC, the sensors are able to transmit their data in parallel to the sink node as
opposed to the serial transmission path required for efficient data aggregation. However,
the DSC scheme requires the messages to be jointly decoded at the receiver, which makes
the system prone to errors and induces a large latency as in data aggregation. As a result,
the performance of DSC is greatly affected by the MAC protocol, which is illustrated in
the following example and described in detail in (Tsai et al. 2007).

Encoder 1

Encoder 2

Joint
Decoder

X

Y

R1

R2

X,Y

(a) Two user DSC example

H(X) R1

R2

H(X|Y)

H(Y)

H(Y|X)

(b) Achievable rate region

Figure 12.4 Slepian-Wolf theory.
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Consider a network of N sensors that generate data X1, X2, . . . , XN , respectively,
and let the sensors encode with the rates R1 = H(X1), R2 = H(X2|X1), R3 = H(X3|X2,

X1), . . . , RN = H(XN |XN−1, . . . , X1). Due to the specific encoding order, the data of sen-
sor i can be decoded only if the data from sensors 1 to i − 1 are successfully received.
Therefore, the conventional MAC protocols that maximize the packet throughput are not
sufficient to ensure a high percentage of decoded packets, i.e. the decoded throughput. To
improve the decoded throughput or to reduce the decoding delay, the sensors encoded with
less dependency with other sensors should be granted with a higher probability of transmis-
sion. For example, in a slotted ALOHA system, the transmission probability assignment
should be such that p1 ≥ p2 ≥ · · · ≥ pN , where pi is the probability that user i trans-
mits in a time slot. We compare three policies – Policy I: pi = 1

N
, for all i; Policy II:

pi = a − a−b
N−1 (i − 1), where (a + b)/2 = 1/N ; and Policy III: pi = 2α−1

2αi , where α is a
policy parameter. Note that the probabilities are assigned such that

∑
i pi ≈ 1. For N = 21

and the probability assignments plotted in Figure 12.5(a), we show, in Figure 12.5(b), the
throughput of the system with respect to the index of the time slots. The solid lines rep-
resent the conventional throughput under each policy, in terms of the number of received
packets (not necessarily decodable), while the dashed lines represent the decoded through-
put. We can see that, as the transmission probabilities becomes more biased towards the
users with smaller indices, the decoded throughput is increased at the early stage of
the process while the throughput of the packet is decreased. However, later on in the
process, the decoded throughput increases rapidly for the policies with high through-
put since most data are collected at this point. To see the effect on energy consump-
tion, let us consider the binary Markov data model where each sensor has a binary data
with probability 0.5 and the consecutive sensors have a Markov relation with transi-
tion probability equal to 0.05. Suppose that the energy consumed to transmit each bit
is equal and normalized to 1. We can then obtain the average decoded throughput per
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Figure 12.5 The performance of DSC under different random access policies where the
solid line is the throughput and the dashed line is the decoded throughput.
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bit-energy as
Decoded Throughput

H(Xi |Xi−1, . . . , X1) × (# of transmissions)

for sensor i. It is shown in Figure 12.6 that the biased transmission probabilities yield a
high decoded throughput per energy bit while the case without DSC loses significantly in
terms of energy consumption. Interestingly, one can also trade off the compression effi-
ciency to increase the decoded throughput by having sensors group into clusters and encode
their messages based only on the sensors within its cluster. A discussion of reliability and
efficiency tradeoff can be found in (Marco and Neuhoff 2004).

12.4.3 Spatial Sampling of a Correlated Sensor Field

For sensor networks that are densely deployed in a spatially correlated field, sensors in
the vicinity of each other may contain highly redundant information and the resources
should not be expended to transmit the data from all the sensors. The spatial sampling
technique exploits this fact and leads to sensor MAC protocols that enable only a sub-
set of sensors to access the channel, much like the sampling procedure in digital signal
processing.

A sensor MAC protocol based on spatial sampling was proposed in (Vuran and Akyildiz
2006) for a data gathering application described as follows. Consider a network of N

sensors, denoted by S = {1, 2, . . . , N}, that take noisy measurements of a common source
�. The data measured by sensor i is modeled by

Xi = �i + Wi

where the Wi’s are i.i.d. Gaussian with zero mean and variance σ 2
W . Suppose that the mea-

surements are spatially correlated where �i and �j are modeled as jointly Gaussian random
variables with zero mean and correlation coefficient ρ�i,�j

= e(−di,j /θ1)θ2 , for θ1 > 0 and
θ2 = (0, 2], which decreases monotonically with the distance between i and j , denoted by
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di,j . Similarly, � is also jointly Gaussian with �i with variance σ 2
� and the correlation

coefficient is ρ�,�i
= e(−d0,i /θ1)θ2 where d0,i is the distance between the source and sensor i.

Let SM ⊂ S be the subset of sensors whose data is to be sent to the sink node and let
|SM | = M . Suppose that each sensor in the subset transmits a scaled version of their local
measurement to the data fusion center. The message sent by sensor i is then modeled by

Yi =
√

PE

σ 2
� + σ 2

W

Xi, for all i ∈ SM,

where PE is the power constraint at each sensor. The sink computes the estimate of � by
taking the average of the minimum mean square error (MMSE) estimates of Yi’s, i.e.

�̂(SM) = 1

M

∑
i∈SM

Zi,

where

Zi = E[�iYi]

E[Y 2
i ]

Yi = σ 2
�

σ 2
� + σ 2

W

(�i + Wi).

The mean square distortion of the estimate is then given as follows:

D(SM) = E
[(

� − �̂(SM)
)2
]

= σ 2
�− σ 4

�

M(σ 2
�+σ 2

W)

2
∑
i∈SM

ρ�i,�− 1

+ σ 6
�

M2(σ 2
�+σ 2

W)2

∑
i∈SM

∑
j �=i

ρ�i ,�j
. (12.1)

If there exists a tolerable distortion D∗ > D(S), then it is sufficient to gather information
only from a subset of sensors SM ⊂ S such that D(SM) < D∗.

This example illustrates the effectiveness of spatial sampling. Specifically, as shown in
(12.1), there are two conflicting factors that determine the sensors’ selection: first of all,
sensors close to the event � should be chosen since these sensors have high correlation
with the event � and reduces the distortion through the parameter ρ�i,� in the second term;
secondly, sensors in close vicinity of each other should not be chosen simultaneously since
the distortion increases due to the effect on ρ�i,�j

in the third term. Hence, from a MAC
perspective, sensors closer to the source should be granted the priority of using the channel,
but using the limited resources to transmit all the data in the vicinity of the source will
increase the distortion due to the close location (and, thus high correlation) between sensors.

The Correlation-based Collaborative Medium Access Control (CC-MAC) protocol was
proposed in (Vuran and Akyildiz 2006) based on this argument. During the initial phase of
CC-MAC, the sink node computes a ‘correlation radius’ based on the statistics of the sensor
field and the distortion constraint of the system. Then, broadcasts this information to the
sensors. Similar to CSMA, CC-MAC adopts the RTS/CTS/DATA/ACK handshake every
time it has a message to transmit. To eliminate the redundant transmissions from highly
correlated sensors, each sensor listens to the channel for RTS packets and checks if these
packets belong to sensors within its correlation radius. If in fact an RTS belongs to one
of these neighbors, the sensor will enter a sleep state to avoid idle-listening, overhearing
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and transmission redundancy. This method effectively reduces the energy and bandwidth
consumption but relies strongly on knowledge of the statistical model of the sensor field.

The delay in communications may also have a large impact on the application perfor-
mance especially when the sensor field is changing rapidly over time. However, this aspect
is often neglected in the studies of sensor MAC protocols. In (Cristescu and Vetterli 2005),
a spatial sampling scheme is considered for the gathering of a time-varying sensor field.
The author quantifies the distortion caused by both the MAC delay and the number of
sensor samples that are gathered at the sink node. Although an increase of sensor samples
will improve the distortion, there is an optimal point beyond which the MAC delay caused
by channel contention will dominate the performance. Therefore, it is important to derive
MAC protocols that meet the distortion constraint at each instant in time with the careful
selection of sensors and an appropriate packet drop rate, which is subject to future research.

12.5 Cooperative MAC Protocol for Independent Sources

As shown in the previous sections, the signal processing performed in the sensor network
applications can be facilitated with cross-layered designs between the application and the
MAC layers. However, instead of making slight modifications to existing MAC protocols,
new signal processing techniques can be used to improve the efficiency of sensor network
MAC protocols both in terms of conventional QoS attributes, such as throughput and delay,
and also in terms of the application performance. In fact, capitalizing on the collaborative
nature of sensor networks, we show that these improvements can be obtained through
cooperative communications or collaborative signal processing between sensors.

Cooperative communications

Cooperative communications, as proposed for user-oriented systems in (Laneman and Wor-
nell 2003; Laneman et al. 2004; Sendonaris et al. 2003), allows distributed users to share
and to coordinate the use of their resources in a wireless environment. To achieve this goal,
users must communicate their local information to their respective partners and help relay
the messages received from their cooperating partners. As a result, users that momentarily
experience a deep fade in their link towards the destination can utilize quality channels
provided by their partners to transmit their data. This is the spatial diversity gain achieved
with cooperative communications, which is similar to that of multiple antenna systems.

The cooperative system is best illustrated with a canonical three node example, as shown
in Figure 12.7, where the two users, user 1 and user 2, are transmitting cooperatively their
messages to the destination. Without cooperation, each user’s transmission will go through
an independent fading path as shown in the figure, in which case the transmission will fail
with high probability if the signal-to-noise (SNR) ratio of its own path falls below a certain
value. However, if the users are able to cooperate by transmitting each other’s messages, the
transmission will fail only when both channels experience deep fading simultaneously, i.e.
the duration between the dashed vertical lines in Figure 12.7. Specifically, if each channel
enters a deep fade with probability p, the probability of an unsuccessful transmission in the
cooperative system will be equal to p2 instead of the probability p in a non-cooperative
system.
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Figure 12.7 Two user cooperative communications system.

A cooperative communication scheme typically consists of two phases: the coordina-
tion phase and the cooperative transmission phase. In contrast to multiple antenna systems,
coordination is necessary for cooperative communications since the users are distributed
in space, but it is often the cause of inefficiency in many cases. Typical ways of achiev-
ing coordination are through either direct transmission between sensors (solid lines in
Figure 12.7) or feedback from the destination (dashed lines). Depending on the messages
received in the coordination phase, the users (sensors) encode their messages to enhance
the reception at the receiver. A few popular cooperative schemes are the selective relay-
ing (SR) scheme, the amplify-and-forward (AF) scheme and the decode-and-forward (DF)
scheme. A survey of cooperative communication strategies can be found in (Hasna and
Alouini 2004; Hong et al. 2007). Most of these cooperation schemes can be extended to
a network with an arbitrary number of users. In sensor network applications, cooperation
can be employed under different network topologies, such as: the cluster-based topology
(Bandyopadhyay and Coyle 2003), where sensors in the same cluster cooperatively trans-
mit to the cluster-head; the star topology, where sensors transmit through direct links to
a central access point (Heinzelman et al. 2002; Venkitasubramaniam et al. 2004); or the
multi-hop topology, where the destination is simply an intermediate relay in a multi-hop
route.

Two features of the cooperative system allow us to improve upon conventional MAC
protocols. On the one hand, users that experience bad channels due to their distant location
or deep fading may utilize other users to relay their messages. One the other hand, the
destination is able to combine the signals received at different time instants or from dif-
ferent users to enhance the reception performance. In non-cooperative systems, redundant
transmissions at different time instants occur only when the previous transmissions fail
and the failed transmissions are always discarded even though they actually contain partial
information of the transmitted messages. With cooperation, transmissions that are usually
considered as failures will be combined to enhance the reception. In this case, multiple
failures in the conventional sense may add up to be a successful transmission in the coop-
erative system. Even with the cost of increased overhead due to coordination, there is an
overall advantage in terms of outage probability and throughput (Laneman et al. 2004; Liu
et al. 2005).
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IEEE 802.11 legacy cooperative MAC

In (Liu et al. 2005), a MAC protocol was proposed based on cooperative transmissions and
provides backward compatibility with current IEEE 802.11 legacy systems. Specifically,
the cooperative MAC inherits the three-way handshake procedure adopted in the DCF of
IEEE 802.11. In the proposed MAC protocol, each user maintains a table of all possible
cooperating partners (or helpers), denoted by the set C, by recording three fields: the helpers’
MAC address, the achievable transmission rate between the source and the helper (Rsh)
and the rate between the helper and the destination (Rhd ). The rate Rsh is estimated by
measuring the relative channel conditions of the transmissions when the source overhears
the RTS/CTS message from the partner during previous transmissions. The rate Rhd and the
MAC address of the helper are contained in the RTS/CTS messages that are emitted by the
partners and are recorded from previous handshake procedures. When a user has a message
to transmit, it will check within its table and select the user with the best rate as its partner.
Suppose that each data packet contains L bits, the user will select the partner h ∈ C if and
only if L/Rsh + L/Rhd < L/Rsk + L/Rkd for all k ∈ C and L/Rsh + L/Rhd < L/Rsd ,
where Rsd is the rate of the direct transmission from the source to the destination. As a
result, cooperation is used only when it outperforms direct transmission and the helper that
yields the least amount of transmission time will be chosen as the potential cooperating
partner.

As shown in Figure 12.8, once the partner is chosen, the source broadcasts an RTS
message containing the partner’s MAC address along with the rates Rsh and Rhd . If the
RTS is successfully received and that the rates Rsh and Rhd are in fact achievable, the helper
will reply with an HTS message, whose format is similar to that of the CTS message. After
receiving the HTS at the destination, it will then reply with a CTS message that reserves
the channel for the amount of time needed for the relay transmission. If the HTS was not
received within a certain time-out period, the destination will instead emit a CTS message
reserving the channel for the duration needed for direct transmission. The proposed strategy
allows us to achieve spatial diversity with simple modifications to the IEEE 802.11 legacy
system.

The cooperative method used in the above MAC protocol is a variant of the selective
relaying scheme and does not utilize the advantage of signal combining at the receiver.

User 1

User 2
(helper)

Destination

HTS

H
TS

RTSR
TS

CTS User 5

User 4

User 3

Figure 12.8 Cooperative MAC based on the IEEE 802.11 system.
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In (N et al. 2005), a cooperative MAC protocol was proposed based on the DF relaying
scheme. This work considers a random access system where all users have direct links
to each other and the access point, hence, there is no need for the exchange of RTS/CTS
messages. Similar to the DCF of the IEEE 802.11, each user that has a message to send
will transmit whenever they sense the channel idle. If the message was not successfully
received (and, thus, not acknowledged) by the access point, the users that overhear the
transmission will backlog the packet and retransmit the packet in place of the source user
after a random backoff time. The retransmission from cooperating terminals will continue
until an acknowledgement is received from the access point or until a time-out period ends,
in which case the backlogged packets will be dropped. The partially decoded packets are
queued at the destination until a combined detection is able to correctly decode the packet
(or until the time-out expires).

Collision resolution based on cooperation

Cooperative transmission is also used to resolve collisions in random access networks.
Suppose we consider a slotted random access network where the users transmit in each time
slot with independent probabilities. If the destination employs only a single-user receiver,
multiple transmissions in the same time slot will result in a collision and no message can
be extracted from the corrupted signal. When this occurs in conventional non-cooperative
systems, the corrupted messages will be discarded by the receiver and the failed users will
retransmit the same message in later time slots. However, there is a loss in efficiency since
the information embedded in the discarded packets were not exploited in the reception.

In (Lin and Petropulu 2005), a collision resolution method was proposed for slotted
random access networks by using cooperative transmissions and optimal combining at the
receiver. When a collision occurs in a certain time slot, the network will enter a cooperative
transmission epoch (CTE) for a duration of K̂ − 1 time slots. During each of these time
slots, a user is selected to transmit based on a predetermined order. If the selected user is
one of the colliding users, it will retransmit its own message in the time slot; otherwise,
the user serves as a relay and retransmits the mixture of signals that was overheard during
the collision.

Let Xi[n] = [Xi,1[n], . . . , Xi,J [n]] be the J -symbol message transmitted by user i at
time n. Suppose that K users, denoted by S[n] = {i1, . . . , iK}, transmits during the n-th
time slot and each user not in the set S[n] receives a mixture of signals modeled by

Yr [n] =
∑

i∈S[n]

hir [n]Xi [n] + wr [n], r /∈ S[n]

where hir [n] is the channel gain from user i to r during the n-th time slot and wr [n] is the
1-by-J additive white Gaussian noise vector. Similarly, the access point (AP), denoted by
d, will receive the signal

Z[n] =
∑

i∈S[n]

hid [n]Xi[n] + wd [n].

Based on the received signal, the AP will detect the occurrence of a collision and estimate
the number of users K̂ contributing to the mixed signal. If a collision is detected, the
access point will notify the users of the beginning of the CTE and a set of users R[n] =
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{r1, . . . , r
K̂−1} will be chosen, in a distributed fashion, as the ones transmitting in the time

slots n + 1 to n + K̂ − 1. If the selected user ri does not belong to the set S[n], it will
relay a scaled version of the mixed signals, similar to that of the amplify-and-forward
cooperation scheme. Therefore, the signals received by the AP during the time slots of the
CTE are given as

Z[n + k] =
{

hrd [n + k]Xr [n] + wd [n + k], r ∈ R[n]
⋂S[n]

hrd [n + k]α[n + k]Yr [n] + wd [n + k], r ∈ R[n] \ S[n],
,

for k = 1, . . . , K̂ − 1, where α[n + k] is the scaling used to meet the power constraints
of each user. In this case, the signal received over the time slots n to n + K̂ − 1 can be
written in the form of a MIMO signal, i.e. we have

Z = HX + W

where Z= [zT [n], . . . , zT [n + K̂ − 1]]T , X= [XT
i1

[n], . . . , XT
iK

[n]]T and W= [wT [n], . . . ,

wT [n + K̂ − 1]]T . For K̂ sufficiently greater than K , the data can be reliably estimated with
the maximum likelihood detector, i.e. X̂ = arg minX ‖Z − HX‖F (the Forbenius norm), or
the zero-forcing receiver, i.e. X̂ = H†Z where † represents the pseudo-inverse.

Ideally, it is sufficient to have K̂ ≈ K and, thus, there is no loss of throughput even
when collision occurs. However, in practice, the conditions of the matrix H may not be
well enough to solve for X with only K slots of the CTE. Also, the overhead required to
obtain the estimate of K and the error in the estimation will both cause a loss in throughput.
Nonetheless, the overall throughput still exceeds that of random access protocols without
cooperation. A similar collision resolution method can be obtained without the use of coop-
eration by simply having users retransmit their own packets during the CTE, as proposed
in (Tsatsanis et al. 2000). However, there is a loss in performance due to the lack of spatial
diversity in this scheme.

Two advantages are exploited in the cooperative MAC protocols: the spatial diversity
that is used to provide each user with a more reliable transmission path and the spatial mul-
tiplexing gain that is used to separate the sources embedded in the mixed signal. However,
in sensor network applications, the sensors’ data are often highly correlated and it is often
unnecessary to decode separately the messages from each sensor. Instead, we can extract
only the data that is relevant for detection or estimation. This is explored in the remainder
of this chapter.

12.6 Cooperative MAC Protocol for Correlated Sensors

Conventionally, MAC is used to distinguish, at the receiver, the different messages received
from multiple independent sources. However, in sensor networks, the messages transmitted
by the users often represent only a small number of sources or events, such as object track-
ing or target detection, or it may represent a sensor field that is highly correlated in space,
such as temperature or humidity measurements. Therefore, the amount of informative data
generated by the sensor field would not be proportional to the number of sensors. Conse-
quently, the sensor network MAC need only to extract the data relevant for computation
instead of collecting all the data packets transmitted by the sensors, which are inherently
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redundant. Although strategies such as DSC or spatial sampling can be used to achieve this
task, they do not benefit from the energy efficiency and improved reliability of cooperative
systems. In this section, we describe a class of Data-Centric Cooperative MAC (DC-MAC)
protocols and show the effectiveness of this class of strategies in eliminating the sensors’
redundant transmissions using cooperative signal processing techniques. This method is
illustrated in two applications: the data retrieval problem and the distributed detection or
estimation problems.

12.6.1 Data Retrieval from Correlated Sensors

Consider a data retrieval problem where a data gathering node is to obtain a reliable estimate
of each sensor’s observation using the minimum number of transmissions or time slots.
When using a spatial sampling scheme, the data gathering node collects data only from a
number of sensors whose data are sufficient to meet the distortion constraint. However, the
efficiency degrades dramatically under strict distortion requirements since the data from a
large fraction of sensors must be collected. In this case, the redundant transmissions will
increase dramatically if distributed source coding or multiple description coding schemes
(Cover and Thomas 1991) are not employed. This disadvantage is overcome with DC-MAC.

The key intuition of the DC-MAC is to have multiple highly correlated sensors share
the same transmission channel instead of assigning a separate channel to each individual
user. In the extreme case where all sensors observe the same data, it should be sufficient
to assign a single channel for the transmission of this data and have all sensors transmit
cooperatively in the same time slot. In practical scenarios, we can choose a subset of sensors
that has a high probability of containing the same data to transmit cooperatively in each
time slot. In fact, this occurs among sensors that are closely located in a spatially correlated
sensor field. The concept is similar to that of group testing (Dorfman 1943; Sobel and Groll
1959) in blood testing applications where multiple blood samples are pooled together and
tested simultaneously to see if one of the samples is infected with the disease.

As a proof of concept, we first show the performance of DC-MAC for a binary correlated
model and, then, generalize the concept to include different data models and cooperation
strategies.

Example: One-dimensional Binary Markov Field

Consider a network of N sensors, denoted by S = {1, 2, . . . , N}. Let X = [X1, . . . , XN ]
be the set of data to be collected from the sensors, where Xi ∈ {0, 1} represents the data
observed at sensor i, e.g. the binary quantization of a continuous random field. For the
simplicity of illustration, we shall assume that the sensors are located in a one-dimensional
area [0, D], as shown in Figure 12.9(a) and that the sensors are taking binary samples of
a continuous Markov random field. In this case, the data vector X forms a first-order shift
invariant Markov chain with two possible states 0 and 1, i.e.

P (X) = P (X1)

n∏
i=2

P (Xi |Xi−1) (12.2)
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Figure 12.9 Illustration of the binary Markov data model.

with the transition probabilities α = P (Xi = 1|Xi−1 = 0) and β = P (Xi = 0|Xi−1 = 1),
as illustrated in the state diagram shown in Figure 12.9(b).

Assume that the probability of Xi , for all i, is equal to the steady state distribution
where

p � Pr(Xi = 1) = α

α + β
(12.3)

and, similarly, q � Pr(Xi = 0) = β

α+β
= 1 − p. The correlation coefficient is defined as

ρ � Cov(Xi, Xi+1)

σXi
σXi+1

= 1 − (α + β) = 1 − ρ (12.4)

where σ 2
Xi

= E[Xi − E(Xi)]2 = p(1 − p) and Cov(Xi, Xi+1) = p(1 − p)[1 − (α + β)].
We note that each value of (p, ρ) uniquely specifies a pair of transition probabilities
(α, β). In this example, we consider the case where ρ takes on values within the interval
[0, 1]. When ρ = 0, the model reduces to the i.i.d. Bernoulli probability model, which is
the model adopted in the group testing literature (Dorfman 1943; Sobel and Groll 1959).
Even though the sensors are independent in this case, the total number of transmission
channels can still be reduced due to the low aggregate entropy when p is close to 0 or 1.

DC-MAC: A query-and-response data retrieval strategy

To efficiently retrieve the data from the sensors, the receiver polls a group of sensors to
transmit in each time slot depending on the statistics of the sensors’ data. Specifically,
we pick a group of sensors that is likely to contain the same quantized measurement.
For example, when the sensors in a group G ⊂ S are likely to contain the bit b = 0, the
receiver polls the sensors in G along with a query asking whether or not the sensors actually
contain the bit 0. This query is denoted by Q = (G, b) ∈ 2S × {0, 1} (where b = 0 in this
specific example). As a response to this query, sensor i transmits a pulse in the assigned
time slot only if i ∈ G and Xi �= b (in protest of the wrong guess imposed by the data
gathering node); otherwise, the sensor remains silent. Let us split the group G into two
distinct subgroups G(0) � {i ∈ G : Xi = 0} and G(1) � {i ∈ G : Xi = 1}. Thus, we have
G = G(0) ∪ G(1) and the signal arriving at the receiver can be denoted by

r(t) =
∑

i∈G\G(b)

hi(t) ∗ p(t) + n(t) (12.5)
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where p(t) is the signal emitted when the query was not satisfied, hi(t) is the channel
response between sensor i and the data gathering node and n(t) is the additive white
Gaussian noise process. Let us consider a simple receiver structure2 where the receiver
only detects for the existence of a pulse. In this case, the receiver makes a decision among
the two hypotheses:

H0 : r(t) = n(t)

H1 : r(t) = ∑
i∈G\G(b) hi(t) ∗ p(t) + n(t) for |G \ G(b)| > 0.

(12.6)

In this example, we assume that the noise is negligible and focus on analyzing the com-
pression capability of the proposed algorithm. In the absence of noise, when H0 occurs,
the receiver knows that all the sensors contain the bit b and, therefore, has resolved the set
using only one time-slot. However, when H1 occurs, the receiver knows that there exists at
least one sensor in the group that does not possess the bit b but no information is given on
the specific identity or even the total number of these sensors. In this case, smaller subsets
of the group G must be polled in the subsequent time slots in order to identify the sensors
possessing the opposite message. By appropriately choosing the queries in each time slot,
one can eventually resolve the entire set of sensors’ data. In fact, our goal is to obtain a
lossless estimate of X at the data gathering node using the minimum number of time slots.

Considering the noise-free version of (12.5), the data gathering node receives a binary
symbol Z[m] = 1 in the m-th transmission time-slot if H1 occurs, and receives Z[m] = 0
if H0 occurs. The sequence of outcomes combined with the sequence of queries {Q[m]}
allows the receiver to reconstruct the vector X. Suppose that L is the total number of
queries needed to obtain a lossless reconstruction of the vector X. Then, the vector Z[1 :
L] = [Z[1], Z[2], . . . , Z[L]] serves as a lossless data representation of the vector X and
the expected number of queries E[L] is lower bounded by the entropy of X (Cover and
Thomas 1991), i.e.

H(X) ≤ E[L] ≤ N. (12.7)

The upper bound is achieved when we assign an individual time-slot to each sensor. To min-
imize the total number of transmissions, the sequence of queries {Q[m]} must be optimally
designed based on the available information at the data gathering node, i.e. the previ-
ously received channel outputs Z[1 : m − 1] and the statistical distribution of the data PX.
Although there is no tractable method for obtaining the optimal set of queries, the advantage
of DC-MAC can be shown through the analysis of known suboptimal algorithms.

Two methods have been proposed in (Hong and Scaglione 2004b): (1) the optimized
recursive algorithm and (2) the tree splitting algorithm. These methods follow the same
approach as those used to analyze the performance of group testing problems, as given in
(Berger et al. 1984; Capetanakis 1979). The first scheme allows us to illustrate the effec-
tiveness of this strategy with finite number of sensors while the second strategy provides
an analytical study on the scaling of the performances as N increases.

Strategy I: Optimized recursive algorithm

The intuition of the proposed scheme is to query groups of sensors that are likely to
contain the same data bit. In the binary Markov model, it is desirable in most cases to

2Note that more complicated receivers can be used, such as to estimate the number of pulses instead of simply
detecting for the existence, and the data can be resolved more rapidly. However, this simple receiver is sufficient
for the performance discussions given in the following.
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choose groups of contiguous sensors since they are most likely to contain the same data.
This spatial dependency is consistent with most sensor network applications. Capitalizing
on this observation, we derive the optimal strategy that queries the sensors in the order
of their indices and always takes groups of contiguous sensors. In this case, a node must
be included in the current query if it contains the smallest index among the unresolved
sensors. Our search for the optimal group G[m] (for the m-th query) is reduced from the
set of size 2N (i.e. the power set of S) to a set of size N by taking groups of contiguous
sensors in the order of their index. Note that, in addition to the optimal group, the optimal
question must also be determined.

Let Lrec(X
j

i ) be the minimum number of queries needed to resolve the data Xj

i =
[Xi, Xi+1 . . . , Xj ] using the optimized recursive strategy. For the sensor network S, our
goal is to find the expected value of Lrec(XN

1 ). To initialize the querying process, we start
by allocating a transmission slot to the first sensor in the group, i.e. sensor 1, and ask
either one of the two questions b = 0 or b = 1. Due to the correlation between adjacent
sensors, the realization of the first node will help us determine the best question to ask
in the subsequent queries. Following the approach given in (Berger et al. 1984), we can
obtain the expected number of queries under the optimized recursive scheme as

E[Lrec(XN
1 )] = 1 + p · E[Lrec(XN

2 )|X1 = 1] + (1 − p) · E[Lrec(XN
2 )|X1 = 0]

= 1 + p · G1(N − 1) + (1 − p) · G0(N − 1) (12.8)

where
Ga(m) � E[Lrec(X

i+m
i+1 )|Xi = a].

The second equality follows from the spatial homogeneity of the Markov Chain which
yields the fact that

E[Lrec(Xm
1 )|X0 = a] = E[Lrec(X

i+m
i+1 )|Xi = a], for all positive integer i.

To solve for Ga(m), we define the functions

Fa(m, x, b) � E[Lrec(X
i+m
i+1 )|Xi = a, ∃j ∈ {i + 1, . . . , i + x} s.t. Xj = b]

Ja(m, x, b, y) � E
[
Lrec(X

i+m
i+1 )

∣∣∣Xi=a,∃j∈{i+1,...,i+x} s.t. Xj=b,

∃r∈{i+1,...,i+y} s.t. Xr=b

]
,

for m ≥ x, r , where b is the complement of b. Let us define the events

Exb = {Xj = b, for j = i+1, . . . , i+x},
E1 = {Xi = a, ∃j ∈ {i+1, . . . , i+x} s.t. Xj =b}
E2 = {Xi−1 = a, ∃j ∈ {i+1, . . . , i+x} s.t. Xj =b, ∃r ∈ {i+1, . . . , i+y} s.t. Xr =b}.

Then, the functions in (12.8) can be evaluated with the following set of recursive equations:

Ga(m) = 1 + min
b∈{0,1}
1≤x≤n

P (Exb|Xi = a)Gb(m − x) + [1 − P (Exb|Xi = a)] Fa(m, x, b)

Fa(m, x, b) = 1 +

min
c∈{0,1}


min1≤y<x P (Eyc|E1)Fc(m − y, x − y, b) + [

1 − P (Eyc|E1)
]
Fa(m, y, b),

for c = b

min1≤y≤m P (Eyc|E1)Gc(m − y) + [
1 − P (Eyc|E1)

]
Ja(m, x, b, y),

for c = b.
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Figure 12.10 For N = 36 and ρ = 0.2, 0.4, 0.6, 0.8, we show the performance of the
optimized recursive algorithm (solid line) and the entropy lower bound of (12.7) (dashed
line).

Ja(m, x, b, y) = 1 +

min
d∈{0,1}


min1≤z<x P (Ezd |E2)Fd(m − z, x − z, b) + [

1 − P (Ezd |E2)
]
Ja(m, z, b, y),

for d = b,

min1≤z<y P (Ezd |E2)Fb(m − z, y − z, b) + [
1 − P (Ezd |E2)

]
Ja(m, z, b, x),

for d = b.

In Figure 12.10, we show the performance of the optimized recursive algorithm for
a network of N = 36 sensors and for various values of ρ. The dashed lines represent
the entropy lower bound of (12.7) for each case of ρ and the solid lines represent the
performance of the proposed algorithm. We observe that the proposed querying strategy
closely approximates the optimal performance (i.e. the entropy lower bound that can be
achieved asymptotically with Huffman coding). More importantly, we can see that the
expected number of time-slots vary with the entropy of the data as opposed to using a
fixed number of time slots that are proportional to number of sensors, as with user-oriented
MAC protocols such as conventional CSMA or TDMA schemes. The advantage of DC-
MAC is most promising when p is close to 0 or 1 and when ρ is close to 1, i.e. high
spatial correlation.

Strategy II: Tree splitting algorithm

With Strategy I, we have shown that the proposed cooperative MAC protocol yields com-
parable performances to the optimal compression scheme for a finite number of sensors.
However, the recursive formulation of (12.8) does not show explicitly the effect of N , p

and ρ on the performance. In this section, we propose a tree splitting algorithm to determine
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the group of sensors for each query and capitalize on the simple structure of the algorithm
to attain the asymptotic performance of the cooperative MAC protocol.

To simplify our analysis, we consider a suboptimal scheme where each group of sensors
is queried twice whenever it is selected, e.g. for some n ≥ 1, let the two queries Q[2n −
1] = (G[n], 0) and Q[2n] = (G[n], 1) be imposed on the same group G[n]. This approach
yields a pair of outputs (Z[2n − 1], Z[2n]) and provides us with the ternary information
on G[n]:

0: (Z[2n − 1], Z[2n]) = (0, 1)

1: (Z[2n − 1], Z[2n]) = (1, 0)

e: (Z[2n − 1], Z[2n]) = (1, 1)

where 0 indicates the fact that all sensors in G[n] contain the bit 0 and, vice versa, for
1. When e occurs, the receiver identifies the fact that both 0 and 1 are contained in the
group of sensors but it is not able to identify the exact sensors that have the bit 1 and those
that have the bit 0. This is referred to as the erasure case. When e is received, a subset
of the original group of sensors must be taken in the subsequent queries until the group is
resolved. By constraining the strategy such that both questions are asked using consecutive
queries, what remains to be determined is the sensors chosen in each group. The approach
is suboptimal but we shall show that it is sufficient to observe the scaling behavior of the
DC-MAC.

Consider the case where N = 2M for some positive integer M . The binary tree splitting
protocol initially splits the group of sensors into two distinct subgroups of equal size and
each of these subgroups are queried twice in consecutive time slots. If the outcome of the
query results in an erasure, the original group is divided again into two subgroups of the
same size where each subgroup is tested separately in subsequent time slots. Otherwise,
the outcome is 0 or 1 and the receiver goes on to query a new group of sensors.

For example, as shown in Figure 12.11, we consider a network of 16 nodes where each
vertex Gij denotes a group that consists of all the sensors within its subtree. In the proposed
algorithm, the sequence of queries starts from the subgroups of G00, i.e. G10 and G11, and
continues splitting and querying the smaller subgroups each time the larger group cannot
be resolved through a single query. If the query on Gij results in either 0 or 1, the system
continues to query the group Gi,j+1 since it is the smallest group that is not yet resolved.
However, if the test results in an erasure, the vertex Gij branches into two subgroups where
the group Gi+1,2j is queried next. For the data vector as shown at the bottom of the tree in
Figure 12.11, the sequence of tests are done in the order of the following groups: G[1] =
G10, G[2] = G20, G[3] = G30, G[4] = G40, G[5] = G31, G[6] = G21, G[7] = G11, G[8] = G22,
G[9] = G23, G[10] = G36 and G[11] = G37. We note that, after the query on the group G40,
the query on G41 is skipped since we already know that G40 and G41 contain different bits
from the erasure resulting from the query on G30.

Considering the Markov model in (12.2), we can compute the minimum number of
time-slots needed to resolve the sensors’ data using the binary tree splitting algorithm.

Theorem 12.6.1 (Hong and Scaglione (2004b)) Consider a network of N =2M sensors
and the binary data X modeled by the two-state Markov Chain with the parameters (p, ρ).



334 MAC PROTOCOLS FOR SENSOR NETWORKS

30 31 33 34 35 36 37

20 22 23

10 11

00

s0 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15

0 0 0 1 1 0 0 0 01 1 1 0 0 1 1

32

21

Figure 12.11 Example of the realization of a sensor field with the binary sequence
0100111100001100.

With the {0, 1, e} information, the binary tree splitting algorithm yields an expected number
of time-slots equal to

E[Ltree(N)] = 2 +
M−2∑
i=1

2i+1ψ(M − i, p, ρ) + 2M−1ψ(1, p, ρ). (12.9)

where ψ(M − i, p, ρ) = 1 − p · [1 − (1 − p)(1 − ρ)]2M−i−1 − q · [1 − p(1 − ρ)]2M−i−1.

When the correlation is high, i.e. ρ close to 1, the result in (12.9) can be approximated as

E[Ltree(N)] ∼= 2 + pq(1 − ρ)[4N · log2 N − 9N + 8]. (12.10)

This result shows that the expected number of queries scales with the parameters p and ρ

which determines the statistics of the sensor field. Specifically, E[Ltree] decreases as p or
q approaches 0 and also for ρ approaching 1. This is consistent with the behavior observed
in Figure 12.10. However, since we claim no optimality in this scheme, poor performances
may occur when the sensors have small correlation. Nonetheless, the performance depends
on the data statistics rather than having a fixed transmission cost with respect to the number
of users.

In the binary tree splitting algorithm, we initiate the process by splitting the network
into 2 subgroups and then proceed with the binary splitting within each group. However,
when the correlation is low, the large initial groups will almost certainly result in an erasure.
Therefore, it would be desirable to partition the network initially into 2K subgroups, where
K ≥ 1, and choose the optimal K for each values of (p, ρ). Thus, we have a 2K -ary tree
splitting scheme, as shown in Figure 12.12, where each partition proceeds in a similar
way as the binary tree splitting algorithm described in Figure 12.11. Following the same
approach as that shown in Capetanakis (1979), we can find the optimal K that minimizes
the expected number of tests E[L] for each value of (p, ρ). We note that the optimal K ,
as a function of p and ρ, decreases monotonically with respect to ρ and it is symmetric
around p = 1/2 (Hong and Scaglione 2006). In the following, we derive the optimal K

for two cases: (i) the case where there is a fixed value of p = 0.5; and (ii) the case where
ρ is close to 1.
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Figure 12.12 The illustration of the tree under the 2K -ary tree splitting algorithm.

Theorem 12.6.2 (Hong and Scaglione (2004b)) Case I: For fixed p = 0.5, it is optimal
to split the root node immediately into 2K branches where

1 ≤ K =
⌈
M − log

(
1

1 − log(1 + ρ)

)⌉
≤ M. (12.11)

Case II: For ρ close to 1,

1 ≤ K ≈
⌈
M − log

(
1 + 1

4p(1 − p)(1 − ρ)

)⌉
≤ M. (12.12)

From (12.11), we can see that the optimal splitting of the network for (p, ρ) = (0.5, 0)

is equivalent to querying each individual sensor separately, since K = M in this case.
Under the Markov data model, the entropy of the data X scales with N for fixed values
of p and ρ since H(X) = h(p) + (N − 1) · H(X1|X0). However, if optimized splitting is
not applied, the average number of queries for the binary tree splitting algorithm increases
as O(N log N) according to (12.10). Interestingly, from (12.10) and Theorem 12.6.2, we
can instead achieve an increase of only O(N) when the optimal splitting is performed.
Therefore, it is crucial to adopt the optimal splitting in the tree algorithm.

Discussions on the optimal DC-MAC for the binary Markov case

Let Lopt be the number of time-slots used by the optimal querying strategy under the binary
Markov model in (12.2). Let L∗

tree be the number of time-slots used by the optimized tree
splitting algorithm shown in Figure 12.12. The performance of the tree algorithm serves as
an upper bound to the optimal strategy, whose complexity is exponential in the number of
sensors (Du and Hwang 1993). Hence, we have

H(X) ≤ E[Lopt ] ≤ E[2L∗
tree]. (12.13)

The multiplication of 2 on the right side of the inequality is due to the two queries that
we impose on each chosen group, which does not apply to the optimal scheme. From the
bounds given in (12.13), we derive the achievable scaling performances of the expected
number of time slots for the optimal DC-MAC strategy. We consider two cases: (i) the
case where the number of sensors increases while the density remains constant; and (ii) the
case where the density increases linearly with the number of sensors.
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As described in the system model, the binary data at each sensor can be viewed as the
binary quantization of a spatially continuous Markov random process, which results in a
process similar to the random telegraph process (Papoulis and Pillai 2001). Therefore, in
the first scenario, the correlation coefficient ρ remains constant as the size of the network
increases. In the second case, the distance between sensors decreases as the number of
sensors increases and, thus, increases the correlation between sensors. Suppose that the
sensors are placed in a fixed interval [0, D], as shown in Figure 12.9(a) and the distance
between sensors is approximately D/N . It is easy to show that the correlation coefficient
between adjacent sensors satisfies 1 − ρ = c′/N . For these two cases, we can show that
the optimal DC-MAC protocol achieves the best scaling performances in the sense that the
scaling with respect to N is the same as that of the entropy, for the cases indicated in the
following theorem.

Theorem 12.6.3 (Hong and Scaglione (2006)) Let E[Lopt ] be the expected number of
queries necessary for the optimal DC-MAC strategy for the binary Markov data model.
Then, the following properties hold:

1) for fixed (p, ρ) such that (1 − ρ) � 1,

E[Lopt ] = O(N) = O(H(X)); (12.14)

2) for fixed p and ρ = c′/N for some c′ > 0,

E[Lopt ] = O(log(N)) = O(H(X)). (12.15)

For the binary source example, we have shown that data-centric cooperative MAC
protocols can significantly reduce the total number of time-slots necessary for the sensor
to convey its information to a data gathering node. The key feature of this strategy is to
impose a guess or query on X, given the knowledge obtained from previous transmissions,
that will yield the most amount of information from the sensors response. This method
simultaneously compresses the sensors’ information while scheduling the transmission of
each sensor. However, we note that the class of DC-MAC protocols are not restricted to
binary sources. A trivial extension to m-ary sources is given in (Hong and Scaglione 2004a)
where each query is to ask m questions corresponding to the symbols in the m-ary alphabet.
In fact, DC-MAC can be generalized for different data statistics and for different receiver
structures, e.g. a receiver that gives an estimate of the number of sensors transmitting in
each time-slot. A generalized formulation is given in the following and a heuristic algorithm
is given for the selection of queries.

12.6.2 Generalized Data-Centric Cooperative MAC

Consider a set of N sensors, denoted by S = {1, 2, . . . , N} and let X = [X1, X2, . . . , XN ]
be the set of random variables, defined on the probability space (�,B, PX), which repre-
sents a snapshot of measurements obtained by the sensors at a particular time instant. In
general, the data at sensor i, i.e. Xi , may belong to an arbitrary alphabet Xi , which can be
either finite or infinite. The goal is to obtain a reliable estimate of the vector X at the data
gathering node with the minimum number of transmission time-slots.

As described in the binary example, DC-MAC is based on a query-and-response sys-
tem which can be modeled as a multiple-access channel with feedback, as shown in
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Figure 12.13 Cooperative MAC with Feedback Communications.

Figure 12.13. The feedback from the data gathering node is a way to achieve coordination
among cooperating users, as described in Section 12.5. In this model, each sensor transmits
through a direct link to the data gathering node and the desired information is extracted
from the sequence of channel outputs that are transmitted in response to the queries. Each
channel output Z is the result of the simultaneous transmission from multiple sensors and
the feedback from the receiver characterizes the query that is sent by the data gathering
node.

Let Ui[m] ∈ Ui , for m ≥ 1, be the symbol transmitted by sensor i during the m-th
time-slot and let Z[m] ∈ Z be the corresponding channel output, which is determined by
the conditional probability function p(Z[m]|U[m]) where U[m] = [U1[m], . . . , UN [m]].
Assume that the channel is invariant to the time index m, i.e. p(Z|U) � p(Z[m]|U[m])
for all m, and assume that the statistics of X and the channel p(Z|U) are known at both
the transmitter and the receiver. The sequence of channel outputs are used to form a
query or feedback symbol through the function h[m] : Zm → Q, where Q is the set of
possible queries, i.e. Q[m] = h[m](Z[1], . . . , Z[m]). In the binary example, we defined
the set of queries to be Q = 2S × {0, 1} and utilized these queries to notify the sensors
implicitly about their partners’ data and to coordinate the sensors’ transmissions. When the
query is sent, each sensor performs a symbol-by-symbol encoding (Gastpar and Vetterli
2003) and emits the symbol Ui[m], which depends on both the local data Xi and the
query Q[m]. Thus, we define the encoding function fi[m] : Xi × Q → Ui . Depending on
the nature of the problem, the functions fi[m], for all i and m, are subject to certain
constraints, e.g., in practice, it is natural to impose a power constraint on the sensors
(or, more specifically, on the variance of Ui[m]). With the information obtained through m

channel outputs Z[1], Z[2], . . . , Z[m], the receiver computes an estimate of the observation
with the decoding function g[m] : Zm → ∏N

i=1 Xi . The estimate obtained after the m-th
transmission is denoted by X̂[m] and the initial estimate obtained before any transmission
occurs is denoted by X̂[0].

Let L be the random variable representing the total number of channel accesses used to
retrieve the data X. Given the distortion measure d(X, X̂[L]) and the constraint D, our goal
is to minimize the expected number of time-slots, i.e. E[L], such that the estimate achieves
the distortion E[d(X, X̂[L])] ≤ D (through the design on fi[m] and g[m]). In the previous
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example, we considered the lossless reconstruction of X where D is set to 0. We note that,
in general, the symbol-by-symbol encoding considered above may not reach the distortion
constraint most efficiently. However, it is well known that the joint source and channel
coding over correlated sources (Cover et al. 1980) and the feedback structure (Cover and
Leung 1981) adopted in DC-MAC can improve the capacity of the multiple access channel.
This is the form of cooperative advantage that we look to exploit with DC-MAC.

A drawback of this scheme is the complexity involved in computing the optimal
sequence of queries since it requires optimization over all possible groups of sensors and
over all time-slots. In fact, this is the reason for the two suboptimal strategies proposed in
the binary Markov problem. A standard approach to reducing the complexity is to reduce
the size of the search over a reasonably large set or to reduce the problem to a step-by-
step optimization where the optimization is performed separately for each time-slot. For
example, in the binary Markov case, we restrict the search over sets of consecutive sensors,
which reduces the problem to require only polynomial complexity and experiences little
loss in performance. In the following, we provide a heuristic search of the queries that
allows us to reduce the problem to a step-by-step optimization and the algorithm is equally
applicable for all cases.

Heuristic algorithm based on the mutual information criterion

Suppose that the data gathering node is able to compute the best estimate of X, at any
instant in time. Then, we need only to determine the query function h[m] and the encoding
functions fi[m], for all i and m. In order to achieve the distortion D with the minimum
number of time slots, it is reasonable to choose the functions that provide the data gathering
node with the most amount of information about X. Therefore, we propose to use the
following mutual information as the design criterion of these functions.

Definition 12.6.4 (Mutual Information Criterion) During the m-th time slot and given
the channel outputs Zm−1

1 = zm−1
1 , the functions h[m] and {fi[m], ∀i} are chosen as

{h[m], f1[m], . . . , fN [m]} = arg max
h[m],f1[m],...,fN [m]

I
(
X;Z[m]

∣∣∣fi[m](Xi, h[m](zm−1
1 )), ∀i

)
If the channel is deterministic (i.e. it is noiseless as assumed in the binary example),

the criterion is reduced to the following

{h[m], f1[m], . . . , fN [m]} = arg max
h[m],f1[m],...,fN [m]

H
(
Z[m]

∣∣∣fi[m](Xi, h[m](zm−1
1 )), ∀i

)
.

For a channel output that is binary, the entropy is maximized if

Pr
(
Z[m]

∣∣∣fi[m](Xi, h[m](zm−1
1 )), ∀i

)
≈ 1

2
.

In the binary example given previously, the specific DC-MAC strategy is restricted to
having h[m] = (G, b),

fi[m] =
{

1 if i ∈ G and Xi �= b

0 otherwise.
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Figure 12.14 The performance of the heuristic algorithm versus the optimized recursive
algorithm for N = 36. The solid lines represent the performance of the optimized recursive
algorithm and the dotted lines represent that of the heuristic algorithm.

and the channel is deterministic with output z = 0 if u = 0 and z = 1, otherwise. The
optimization is then over the groups G[m] and the queried question b[m]. The solution
given by the heuristic algorithm is then equal to

Q[m] � (G[m], b[m]) = arg min
G,b

∣∣∣∣Pr
(
Xi = b, ∀i ∈ G

∣∣∣Zm−1
1 = zm−1

1

)
− 1

2

∣∣∣∣ .
As shown for the case of N = 36 in Figure 12.14, we observe only a slight loss in perfor-
mance for the heuristic algorithm when compared to the optimized recursive scheme.

The mutual information criterion determines the transmission of each sensor based on a
step-by-step optimization of the functions {h[m], f1[m], . . . , fN [m]}. This method has been
used to optimize tree structured algorithms such as in group testing problems (Chen et al.
1987) and in decision tree construction problems (Hartmann et al. 1982). The method is
justified in the sense that it reduces a general upper bound derived for E[L] [see (Hartmann
et al. 1982; Hong et al. 2005a)]. The strategy does not achieve the optimal performance in
general, but the design criterion can be applied for different data models, channel models
and distortion measures. While this criterion determines the query selection during each
time-slot, a stopping rule must be defined to terminate the process at the desired distortion.

Definition 12.6.5 The total number of queries to achieve the distortion D is defined as

L = inf
{
� : E[d(X, X̂[�])|Z[1], . . . , Z[�]] ≤ D

}
. (12.16)

where X̂[�] is the optimal estimate of X given the channel outputs Z[1], . . . , Z[�].

When the channel output alphabet Z is finite, we observe that the query-and-response
structure of the cooperative MAC protocol can be illustrated with a tree diagram, as shown
in Figure 12.15, where each node in the tree represents a query and each branch extending
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Figure 12.15 Special Case: Tree structured illustration of the querying process.

from the node corresponds to a realization of the channel outputs. The tree terminates
at the point where the distortion constraint is satisfied as defined above. Therefore, the
leaves of the tree represent different estimates of X corresponding to different sequences of
channel outputs ZL

1 or, equivalently, the different paths of the tree. Since the problem can
be described as a tree algorithm, several techniques proposed in the literature for general
tree structured problems can be used to improve our strategy. Specifically, we can utilize
the optimal tree pruning algorithm proposed in (Chou et al. 1989) to derive a more efficient
querying tree. First of all, we construct a tree based on the proposed heuristic algorithm
but overshoot in performance, i.e. we terminate each branch in the tree at a distortion D ′
that is much less than the constraint D. Then, we apply the optimal tree pruning algorithm
to eliminate the additional extensions in the tree such that the average distortion satisfies
E[d(X, X̂[L])] ≤ D. Although there may exist a path down the tree that terminates at a
distortion greater than D, the overall distortion is satisfied with less expected time slots.
Details of the tree pruning for DC-MAC and examples of different applications are given
in (Hong et al. 2005a).

The advantages of DC-MAC can be twofold: (1) it improves the throughput and delay
by exploiting the high correlation among densely deployed sensors; and (2) it achieves
good energy efficiency due to the cooperative transmissions. The first advantage is clear
from the previous discussions while the second advantage is inherent in all cooperative
communications [see (Hong et al. 2005b) for details]. The underlying concept of the DC-
MAC is to assign the same transmission channel to sensors that are likely to transmit
the same information. In this section, we have illustrated the effectiveness of this method
in data gathering applications. Even more interesting, this also applies to detection and
estimation applications as well.

12.6.3 MAC for Distributed Detection and Estimation

A classical example of highly correlated sources can be found in distributed detection and
estimation applications. In these systems, the sensors observe and generate data accord-
ing to a common source or event. These local observations are then communicated to
the data gathering node where a final decision or estimate is made. The performance
depends on the power constraints at each sensor and the specific channel model. Since
these sensors’ observations correspond to the same event, it is likely that they
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Figure 12.16 Distributed detection and estimation problems.

will send the same message to the data gathering node. Therefore, we should not allo-
cate a separate channel to each sensor, but should assign only a common channel for
sensors that are transmitting identical messages. This is the key intuition of the DC-MAC
and has been applied independently to distributed detection and estimation problems in (Liu
and Sayeed 2004) and (Mergen and Tong 2006), where it is referred to as the Type-Based
Multiple Access (TBMA) protocol.

In (Liu and Sayeed 2004) and (Mergen and Tong 2006), the authors considered a sensor
network model as shown in Figure 12.16. In this setup, each sensor, say sensor i, observes
an i.i.d. vector of data Xi[1], . . . , Xi[M] with respect to the event θ ∈ �, where � is the
set of all possible values of the event and Xi[k] ∈ Xi is the observation made at time k.
Assume that the data is also i.i.d. over different sensors. Thus, let PX;θ be the distribution
of Xi[k] for all k and i. Note that the parameter space is discrete in detection problems,
e.g. � = {θ0, θ1} for binary hypotheses testing, while it may be continuous in estimation
problems, e.g. � ⊂ R.

In the centralized scenario where the data gathering node has noise-free access to the
observations, the optimal detector for binary hypotheses testing is obtained as follows:

θ̂ (x[1], . . . , x[M]) =
{

1, γ ≥ 0
0, γ < 0

(12.17)

where � = {0, 1}, x[k] = [x1[k], . . . , xN [k]]T and

γ = 1

NM

N∑
i=1

M∑
k=1

log
PX;1(xi[k])

PX;0(xi[k])
.

γ is called the normalized log-likelihood ratio (LLR). For all reasonable detection strategies,
the average error probability Pe decreases as N , M increase. As shown in (Cover and
Thomas 1991), the Pe for this optimal centralized scheme decreases with an error exponent
equal to

Ec = lim sup
M,N→∞

− 1

NM
log Pe = CI (PX;0, PX;1) (12.18)

where

CI (PX;0, PX;1) = − min
0≤s≤1

log EPX;0

[
PX;1
PX;0

]s

≥ 0

is called the Chernoff information between PX;0 and PX;1.
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In the decentralized case, the local observations are reported to the data gathering
node through the multiple access channel as shown in Figure 12.16. When the sensors
have knowledge of the statistics PX;0 and PX;1, they can compute and transmit their local
likelihood ratios

γi = 1

M

M∑
k=1

log
PX;1(xi[k])

PX;0(xi[k])
.

When these values are transmitted cooperatively and coherently over the multiple access
channel, the data gathering node receives the combined signal

Z =
N∑

i=1

ργi + w (12.19)

where ρ is the scaling used to satisfy the sum power constraints and w is the additive white
Gaussian noise. The receiver makes the decision θ̂ = 1 if Z > 0 and θ̂ = 0, otherwise. It
is shown in (Liu and Sayeed 2004) that the decision based only on one transmission of the
kind in (12.19) achieves the error exponent of the optimal centralized detector.

When the sensors have no knowledge of the data statistics, the LLR cannot be computed
and the previous method would not be applicable. However, by using the TBMA, one can
still achieve the error exponent of the optimal Pe for the centralized detector. Suppose that
the observations belong to a finite alphabet X = {a1, . . . , a|X|}, e.g. the sensors observe
quantized measurements. In TBMA, each sensor first computes the ‘type’, i.e. the empirical
distribution, based on the sequence of data Xi[1], . . . , Xi[M]. The type computed at sensor
i is represented by

Ti (Xi[1], . . . , Xi[M]) = [Ti,a1, . . . , Ti,a|X|] =
[∑

k 1Xi [k]=a1

M
, . . . ,

∑
k 1Xi [k]=a|X|

M

]
,

(12.20)
where

1Xi [k]=aj
=
{

1, if Xi[k] = aj

0 otherwise.

The local type information is transmitted by the sensors cooperatively using a total of |X |
time slots. Specifically, we assign a separate time slot to each element in the alphabet
instead of to each sensor, similar to that with DC-MAC. During the m-th time slot, the
sensors transmit the type Ti,am and the signal arriving at the receiver is

Z[m] = ρ

N

N∑
i=1

Ti,am + w[m] for m = 1, . . . , |X |. (12.21)

Based on the |X | channel outputs, the receiver computes the log-likelihood ratio

γ̃ =
|X|∑

m=1

Z[m] log
PX,1(am)

PX,0(am)

and makes the decision θ̂ = 1 if γ̃ ≥ 1 and θ̂ = 0, otherwise. This detector also achieves an
error exponent equal to that of the centralized detector as the number of sensors increases.
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More importantly, the cost of transmitting the sensors data is only equal to the number
of possible observation values, i.e. |X |, instead of increasing linearly with the number of
users.

The TBMA was proposed independently for the distributed estimation problem in (Mer-
gen and Tong 2006) where it considers a parameter space � ⊂ R and adopts the MMSE
E{(θ̂ − θ)2} as the performance measure. It is shown that the TBMA with coherent trans-
missions as in (12.21) yields an asymptotically efficient estimator in the sense that

√
n(θ̂ − θ)2 → N

(
0,

1

I (θ)

)
where I (θ) = ∑|X|

j=1
(dPX;θ (aj ))2

PX;θ (aj )
is the Fisher information (Poor 1994). However, if the

sensors do not transmit coherently and the signal appearing at the receiver is

Z[m] = ρ

N

N∑
i=1

hiTi,am + w[m] for m = 1, . . . , |X |, (12.22)

where hi’s are random fading gains with non-zero mean, then the ML variant estimator
proposed in (Mergen and Tong 2006) satisfies

√
n(θ̂ − θ)2 → N

(
0,

1 + σ 2
h

I (θ)

)
where σ 2

h = Var(((hi/E[h])). A slight loss in performance is observed due to the random
fading gains experienced by the sensors. Note that, if each sensor makes only one observa-
tion, i.e. M = 1, the type vector Ti will simply be a canonical vector with a 1 at only one
position and 0 everywhere else. In other words, the sensor i transmits only in the time slot
that corresponds to its local data. This is consistent with the strategy used in the binary
example and the extension to M-ary variables in (Hong and Scaglione 2004a).

Interestingly, not only does the data-centric cooperative transmission reduce the total
amount of bandwidth resources, but the resulting detectors or estimators also outperform
the case where each sensor transmits individually in separate channels. This is the loss
of separating source and channel coding in the multiple access environment (Cover et
al. 1980). The topic of source-channel communication in sensor networks is discussed
in (Gastpar and Vetterli 2003, 2005) where they showed that the uncoded transmission
for a finite network of Gaussian sources outperforms any kind of approach based on the
separation principle between source and channel coding. In fact, separation may involve
an exponential penalty in terms of communication resources when the number of sensors
increases. Other work on detection and estimation with communication constraints can be
found in (Chamberland and Veeravalli 2003; Jayaweera 2005; Longo et al. 1990; Xiao and
Luo 2006).

12.7 Conclusion

In this chapter, we surveyed different classes of sensor network MAC protocols with
the emphasis on those adopting cooperative transmissions. Most of the early sensor net-
work MAC protocols were attained by optimizing the system parameters of conventional
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schemes, such as CSMA or TDMA, with the addition of sleep-wake mechanisms to improve
the energy efficiency of the system. With the help of cross-layered policies, the sensor
network MAC protocols can be made more efficient by incorporating knowledge of the
application, such as the possible communication pattern, the traffic load or the network
topology. The dependence of the MAC on the application layer is more explicit in the
class of data-centric protocols. In these schemes, the MAC is derived with respect to the
statistics of the data or is optimized with respect to the performance measure of the appli-
cation. These protocols exploit the collaborative nature of the sensors in the application
layer to reduce the redundancy of the transmitted messages. To achieve this goal, advanced
signal processing techniques, such as the various data aggregation methods, distributed
source coding or spatial sampling, must be performed in the application layer.

Although these methods are easier to achieve in practice due to their similarity with
conventional MAC, they do not fully exploit the cooperative advantage of sensor networks.
By utilizing cooperative signal processing at the sensors, we showed that cooperative MAC
improves upon the conventional MAC in three perspectives: (1) the QoS attributes such
as throughput and latency can be improved due to the spatial multiplexing gain; (2) the
reliability and energy efficiency are obtained from the spatial diversity gains; (3) the band-
width utilization is reduced since the simultaneous transmissions effectively compresses the
sensors’ redundant messages. However, the work proposed in the literature provides more
of a theoretical study rather than a practical scheme. Future work in this direction is nec-
essary, especially with the data-centric MAC protocols. Specifically, the robustness of the
DC-MAC must be studied and error correction mechanisms must be derived to overcome
the costly error propagation that may occur due to its sequential data gathering structure,
a preliminary study is given in (Hong and Scaglione 2005). Similar problems also occur
in DSC and data aggregation, but are dealt with by compromising the performance with
clustering approaches. The extensions of DC-MAC to random access networks are also
desirable since TDMA requires strict coordination between sensors, which are often hard
to achieve without depleting the network resources.

In all sensor network MAC protocols, there is a trade off in reliability, flexibility,
energy efficiency and the application performance. Therefore, numerous sensor network
MAC protocols have been proposed with none of them having a dominant performance
over all the others. The performance, however, is highly dependent on the application at
hand and the users should choose carefully the sensor network MAC protocols adopted
in their system. With the limited resources being the major constraint in sensor networks,
it is often necessary to perform advanced signal processing within the sensors to avoid
unnecessary expenditure of the resources.
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Game Theoretic Activation and
Transmission Scheduling in
Unattended Ground Sensor
Networks: A Correlated
Equilibrium Approach

Vikram Krishnamurthy, Michael Maskery, and
Minh Hanh Ngo

13.1 Introduction

In this chapter, we control the dynamical behavior of an unattended ground sensor network
(UGSN) to acquire information about intruders. An UGSN comprises of a large number of
inexpensive sensors that contribute to area surveillance to detect and track slowly moving
intruders (targets). Intruders may be either moving on foot or in ground vehicles. The
following fundamental tradeoff between the cost of acquiring data (e.g., sensor battery
usage for sensing and data transmission) and the usefulness of the data is typical in such
sensor networks: Each sensor can measure, with limited accuracy, the range (distance) and
bearing (angle with respect to a reference direction) of nearby targets and then transmit
these measurements to a local hub node for data fusion. More sensor readings, and more
aggressive transmission of measurement data, will result in better target awareness, but also
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greater consumption of limited battery resources. The aim of this chapter is to optimally
(in a sense to be made more specific below) trade off target awareness, data transmission
and energy consumption using a two-time scale, hierarchical approach.

The rest of this introductory section is organized as follows. To fix ideas, we first outline
our methodology for designing sensor activation and transmission scheduling algorithms in
Sec. 13.1.1. Then to provide more perspective, in Sec. 13.1.2, we outline the fundamental
tools and related literature.

13.1.1 UGSN Sensor Activation and Transmission Scheduling
Methodology

We will show in this chapter that the sensor activation and transmission scheduling problem
naturally decomposes into two cross-coupled decentralized algorithms that operate on two
different time scales. They are as follows:

• Decentralized Sensor Activation as the Correlated Equilibrium of a Non-cooperative
Game: At the slow time-scale (typically in the order of seconds), we use a game-
theoretic adaptive learning strategy to activate sensors according to their proximity
to targets of interest. The sensors are interpreted as players in a non-cooperative
game. We present a decentralized learning algorithm which each sensor deploys. The
algorithm determines at each time instant whether the sensor should be activated or
remain asleep. When each sensor plays according to this decentralized algorithm, the
number of active sensors in the UGSN converges to a correlated equilibrium. The
concept of correlated equilibria in game theory was introduced in Aumann (1974,
1987) and is more general than the widely used Nash equilibrium. Moreover, corre-
lated equilibria are easier to characterize and more natural to decentralized adaptive
algorithms such as considered here.1 The resulting sensor activation control powers
down all but a limited number of sensors that have the best readings of the target.

• Markov Decision-based Threshold Transmission Controller: If a sensor is activated
by the above game theoretic learning algorithm, then it measures bearing and range
signals of nearby targets and transmits data to a local hub node over a wireless multi-
access channel shared by several other sensors. The transmission of packets takes
place at a fast time-scale (typically in the order of milliseconds). The wireless channel
quality is adversely affected by the number of other sensors transmitting data, and
can be modelled as a finite state Markov chain. At each time instant, based on the
channel quality, each sensor has to decide whether to transmit data and waste battery
power, or wait and increase delay. We formulate the sensor transmission scheduling
problem as a Markov decision process with a penalty terminal cost. The key result
shown is that the optimal transmission policy has a threshold structure. This threshold
structure is proved using the concept of supermodularity.

1Aumann was awarded the 2005 Nobel Prize in economics. The following extract is from the Nobel Prize
press release in October 2005: ‘Aumann also introduced a new equilibrium concept, correlated equilibrium,
which is weaker than Nash equilibrium, the solution concept developed by John Nash, an economics laureate in
1994. Correlated equilibrium can explain why it may be advantageous for negotiating parties to allow an impartial
mediator to speak to the parties either jointly or separately, and in some instances give them different information.’
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13.1.2 Fundamental Tools and Literature

The above methodological description of activation and transmission control in an UGSN
mentioned three fundamental concepts, which are of broad interest in statistical signal
processing, stochastic control and wireless communications. To give more perspective, we
briefly describe these three tools and related literature.

1. Non-cooperative games and Correlated Equilibria: In Sec. 13.3.1, we describe static
non-cooperative games and correlated equilibria. Here we briefly outline recent work in
the use of non-cooperative games in sensor networks and motivate our approach. Several
problems related to communications in sensor networks have been addressed from a game
theoretic perspective to date, and Goldsmith and Wicker (2002) and MacKenzie and Wicker
(2001) provide a good overview of the area. For specific areas, Kannan et al. (2003) and
Rogers et al. (2005) treat multihop routing, MacKenzie and Wicker (2003) investigate
random access over a common channel, transmission power control is treated by Xing
and Chandarmouli (2004), and topology control by Li and Hou (2006) and Borbash and
Jennings (2002). The common approach in these papers is to define a utility function that
each system component selfishly maximizes, and then analyze system performance at the
Nash equilibrium point of the resulting game. What has not been studied is games in which
sensors must decide how to sense their environment, as opposed to how to transmit their
information. In addition, research so far has used only the Nash equilibrium concept; no
attention is paid to correlated equilibria. We attempt to fill these gaps in our game theoretic
sensor activation approach described in detail in Sec. 13.3. A related area is the study of
correlated equilibria in stochastic, dynamic games, which we consider in applications to
missile deflection in Maskery and Krishnamurthy (2007).

2. Stochastic approximation algorithms: We present a decentralized stochastic approx-
imation algorithm that each sensor deploys to adapt its probability of being activated.
When each sensor deploys this stochastic approximation algorithm, it will be shown that
the overall behaviour of the UGSN converges to set of correlated equilibria (in terms of
the sensor activation probabilities). Stochastic approximation/optimization algorithms are
widely used in electrical engineering to recursively estimate the optimum of a function or
its root, Kushner and Yin (2003) and Benveniste et al. (1990) give excellent expositions
of this area. The well known least mean squares (LMS) adaptive filtering algorithm is a
simple example of a stochastic approximation algorithm with a quadratic objective func-
tion. Stochastic approximation algorithms have been applied to reinforcement learning for
stochastic control problems in Bertsekas and Tsitsiklis (1996), learning equilibria in games
such as in Section 13.3.2, as well as optimization and parametric identification problems
(e.g., recursive maximum likelihood and recursive expectation maximization algorithms,
see Krishnamurthy and Yin (2002)).

In tracking applications, the step size of a stochastic approximation algorithm is chosen
as a small constant. For such constant step size algorithms, one typically proves weak con
vergence of the iterates generated by the stochastic approximation algorithm. Weak con-
vergence is a generalization of convergence in distribution to a function space. The weak
convergence analysis of stochastic approximation algorithms with Markovian noise has been
pioneered by Kushner and co-workers, see Kushner and Yin (2003) and references therein.
It was demonstrated in the 1970s that the limiting behaviour of a stochastic approximation
algorithm can be modelled as a deterministic ordinary-differential-equation (ODE). This is
the basis of the so-called ODE method for convergence analysis of stochastic approximation
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algorithms. Actually, for the correlated equilibrium learning algorithm presented in this
chapter, the limiting behaviour is captured by a differential inclusion Benaim et al. (2005),
rather than a differential equation. We briefly outline this approach in Section 13.3.3.

3. Optimality of Threshold Policies for Markov Decision Processes: Once a sensor is
activated by the above game theoretic learning algorithm, it gathers data and transmits
this data to a local hub node. In Sec. 13.4 we formulate the problem of optimal transmis-
sion scheduling for each sensor in the UGSN as a finite state, finite action MDP over a
finite horizon with a terminal cost. Bertsekas (1995); Kumar and Varaiya (1986); Puterman
(1994); Ross (1983) are comprehensive references for MDPs. Translated to the transmis-
sion scheduling problem in an UGSN, the objective is for each sensor to exploit channel
state information (CSI) to minimizes the expected sum of transmission and data loss costs.

The globally optimal policy for a MDP can be obtained via stochastic dynamic program-
ming2 which leads to a functional equation called Bellman’s equation. However, dynamic
programming suffers from the curse of dimensionality. In this chapter we investigate the
use of supermodularity to obtain structural results for the optimal scheduling policy. In
particular, given the state x of the MDP at any time k, we give sufficient conditions for
which the optimal policy is threshold of the form

u∗
k(x) =

{
Action 1 If state x < sk

Action 2 Otherwise.
(13.1)

Here sk denotes the threshold state at time k. Thus if a MDP has a threshold policy, one only
needs to compute the threshold (sk in the equation above) to implement the optimal policy.
This serves as the main motivation for proving structural results for MDP in general. In
the sensor transmission scheduling problem, we prove that the optimal transmission policy
is threshold in the residual transmission time and the buffer occupancy.

The main idea involved in proving that the optimal policy is threshold is quite straight-
forward: Bellman’s equation yields that the optimal action at time k is

u∗
k(x) = arg min

a
Qk(x, a)

where mina Qk(x, a) is the value function (optimal cost to go) at stage k (a precise definition
is given in Sec. 13.4). It is obvious that for a two-action MDP if u∗

k(x) is an increasing
function of x, then the optimal policy is threshold, i.e., it is of the form (13.1). There-
fore to show the existence of an optimal threshold policy, one only needs to verify that
u∗

k(x) = arg maxa Qk(x, a) is increasing in x. The natural question then is: What conditions
on the function Qk(x, a) guarantee that the arg max Qk(x, a) is increasing? Supermodu-
larity which, roughly speaking, is a generalization of convexity to a lattice, is a sufficient
condition.

We refer the reader to the text of Heyman and Sobel (1984), for a graduate level course
treatment of supermodularity and its use in proving monotone optimal policies for MDPs.
The use of supermodularity in MDPs and games was championed by Topkis (1978). A
comprehensive exposition of the topic supermodularity in decision problems (e.g., MDPs)

2The MDPs we consider in this chapter are finite horizon and do not have global constraints. For infinite horizon
average cost MDPs with global constraints, the optimal (randomized) policy can be computed as the solution of a
linear programming problem, or alternatively the Lagrangian dynamic programming approach presented in Altman
(1999) can be used.
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and noncooperative and cooperative games is given in Topkis (1998). An introductory
tutorial on supermodularity with applications in decision problems and games can also be
found in Amir (2003).

The supermodularity proof presented in Sec. 13.4 requires a substantial relaxation of
the sufficient conditions in the textbook treatment of Heyman and Sobel (1984). Indeed, the
results we present can be viewed as a generalization of the classical results in Derman et al.
(1976) and Ross (1983). In Derman et al. (1976) and Ross (1983), the authors consider the
problem of constructing a finite number of components subject to penalty costs and use
supermodularity to prove the monotonicity of the optimal resource allocation policy. The
optimal sensor transmission scheduling problem in this chapter can be abstracted as the
problem of constructing a finite number of components (transmitting a batch of packets)
within a finite number of time slots in Markovian systems subject to penalty costs. The
proofs of the monotone results in Derman et al. (1976) and Ross (1983) cannot be gener-
alized for the case of a Markovian system state (which in our case is required to model the
Markovian wireless channel). In this chapter, we provide proofs that work straightforwardly
for both cases, i.e. the case of a Markovian system state and the classical case in Derman
et al. (1976) and Ross (1983) where there is no system state (or equivalently, the system
state is a constant). The threshold structure in the residual transmission time and the buffer
occupancy substantially reduces the computational complexity required to implement the
optimal transmission policy. In addition, the proofs we present in this chapter give an easily
accessible tutorial example into the concepts and application of supermodularity.

Besides the literature above, for an exposition of target tracking, detection and recog-
nition, see Bar-Shalom et al. (2001). In addition, work that also uses a MDP approach for
energy-efficient channel-aware transmission control includes Johnston and Krishnamurthy
(2005), which formulates the problem of designing a channel-aware ARQ protocol to bal-
ance between average energy consumption and throughput over infinite time for a two-state
Gilbert-Elliot channel model as a partially observed MDP (POMDP). Wang and Mandayam
(2005) analyze the problem of transmission scheduling in Markovian fading channels for
a power-delay tradeoff under energy constraints with the use of a channel aware ARQ
protocol. Arulselvan and Berry (2005) exploit CSI for optimal transmission control for i.i.d
channels. Finally, Krishnamurthy and Djonin (2007) derive threshold policies via super-
modularity with respect to the monotone likelihood ratio for POMDPs in the context of
dynamic sensor scheduling.

The rest of the chapter is organized as follows. In Section 13.2 we describe the unat-
tended ground sensor network scenario and trade offs. Section 13.3 treats the activation
control problem as a game, and outlines a decentralized algorithm for sensor activation. In
Section 13.4, we describe supermodularity in Markov decision processes and show how
it leads to a simple threshold policy for optimal transmission scheduling for the sensors.
Simulation results are presented in Section 13.5 and conclusions follow in Section 13.6.

13.2 Unattended Ground Sensor Network: Capabilities
and Objectives

In order to maximize energy efficiency in unattended ground sensor networks, it is important
to understand the capabilities and limitations of the network. In this section we present
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details on the integrated activation control and transmission control in an UGSN. This
provides the context for the analysis in this chapter.

13.2.1 Practicalities: Sensor Network Model and Architecture

We consider a network of L energy constrained sensors labelled l = 1, 2, . . . , L, uniformly
distributed in a plane. The sensors are capable of short-range CDMA (code division multiple
access) data transmission, target detection and localization through vibration (e.g. acoustic)
or electromagnetic (e.g. visual) components, and monitoring of RF activity of other nearby
sensors through a specially tuned RF power detector. Computationally, sensors are able to
collect and process target readings, make local decisions for activation control, and decide
when to transmit data according to pre-computed transmission scheduling policies.

An important feature of this chapter is that communication is unidirectional; sensors
are only required to transmit information. This feature greatly simplifies sensor network
operation, since the complex task of communicating from hubs to multiple sensors is
avoided.

Along with the sensor nodes, a smaller number of more powerful hub nodes are
deployed. These hubs, which can be either static or mobile (e.g., mini unmanned aerial
vehicles (UAVs) can be used to collect information from sensors), form a backbone which
receives, processes and reroutes sensor data to an end user. The hubs are highly functional,
with reliable communication and efficient routing protocols for transmitting information
error-free along a multi-hop path to an end user. However, in this chapter we concern
ourselves only with sensor behaviour; route optimization, topology control, and optimal
transmission among hubs is beyond our scope. Indeed, the purpose of the hubs is to abstract
away these issues. The topology of the unattended ground sensor network, along with a
block diagram indicating sensor capabilities, is shown in Figure 13.1.

Below we provide nominal specifications for various sensor functions, including their
power requirements and frequencies. These specifications are derived from various sources,
including the Crossbow Inc. Mica mote sensor, and Akyildiz et al. (2002) and Merrill et al.
(2003). A more functional (and consequently more energy-intensive) sensor package is
available in the form of the military REMBASS-II unattended ground sensor network, as
outlined by Marandola et al. (2002). As an alternative, (Maskery and Krishnamurthy 2007)
calculate the power requirements for Zigbee-enabled sensors in a game-theoretic activation
setting, accounting for power variation due to crowded channel conditions.

Sensing components

Each sensor is equipped with passive detectors, which indicate the direction and intensity
of signals emanating from a target (e.g. motor vibrations), subject to measurement noise.
Assuming signal intensity falls off as an inverse square of the range, we have for sensor l

at time t ,

Proximity(l, t) = min

{
M∑

m=1

Am(t)

(�(l, zm(t)))2
+ ηI (t), KI

}
, (13.2)

where there are M targets, with Am represents the intensity of Target m = 1, 2, . . . , M at
one metre, �(l, zm) the Euclidian distance from Sensor l to Target m, KI represents the
sensor saturation level, and ηI is white Gaussian noise.
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Sensors also measure the local RF activity of other sensors through an RF power sensor.
Merrill et al. (2003) argue that RF power falls off as an inverse fourth power law. Hence
we have

Traffic(l, t) = min

{
L∑

k=1

Bk(t)

(�(l, k))4
+ ηT (t), KT

}
, (13.3)

where Bk represents the RF intensity of Sensor k at one metre, �(l, k) is the distance from
Sensor l to Sensor k, KT represent saturation values for the RF sensor, and ηT is white
Gaussian noise.

Processor and sensor

When active, raw sensor measurements are taken at the rate of 200 kHz and processed
locally. In particular, for every batch of 100 measurements, i.e. at the rate of 2 kHz,
some bearing information (e.g., direction of arrival) is computed and encoded into one
packet. Hence, each active sensor produces bearing data at the rate of 2000 packets per
second. There is a finite-size buffer to store packets that are waiting to be transmitted.
Packet transmission decisions are by pre-computed channel-aware transmission scheduling
policies. Activation control decisions are made at a slow rate of 20 Hz. Processing is
assumed to consume 16.5 mW, as in the Mica mote, and its duty cycle is taken to be 100%
in active mode, and only 5% in sleep mode. Both target and RF sensing have a similar
duty cycle, but requires 10 mW for sampling, amplifying and A/D conversion.

RF transceiver

When active, the RF Transmitter consumes 36 mW of power, while the receiver consumes
4.5 mW. Since transceiver startup time is nonnegligible due to the lock time of the phase-
lock loop, it is assumed that the transmitter has 100% duty cycle in active mode. The
transceiver is completely shut down in sleep mode. We do not require the receiver at all in
our implementation, although it may be useful for higher level configuration purposes not
considered here.

Power supply

Merrill et al. (2003) specify that Lithium battery technology contains approximately 340
WH of power per 1000 cm3. Assuming a 8 cm3 battery pack, this yields 2.72 WH of power.
From the above specifications, active sensors consume 77 mW, while sleeping sensors
consume only 1.83 mW. A sensor is therefore capable of 35 hours of active operation, or
61 days of standby operation.

13.2.2 Energy-Efficient Sensor Activation and Transmission Control

The task of each sensor is to efficiently perform target detection and localization, which
involves two key components: (1) sensors must be fully active only when needed, and
(2) they must operate as efficiently as possible when active. We quantify these trade-offs
in this section, and investigate how to achieve them in Sections 13.3 and 13.4, respec-
tively.
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Figure 13.1 Sensor network layout and sensor architecture. Sensors transmit data to a
backbone of larger hubs. The two-time scale sensor activation and transmission control
algorithm is given in Section 13.4. The activation control algorithm is established separately
in Section 13.3.

Activation control specifies when sensors should be actively transmitting data and when
they should power down to save energy. This should result in activation of the most well-
positioned sensors (closest to target) at any time, but should limit the number of sensors
on to avoid redundancy.

We consider a decentralized activation control solution for two reasons. First, it provides
us with a simple and scalable algorithm for sensor activation since there is no central
controller or infrastructure for activation. Second, it is more energy efficient since sleeping
sensors do not have to periodically turn on a receiver to obtain instructions. We assume
that each sensor activates or sleeps to maximize a utility given by:

ul(t) =
{

αI Proximity(l, t) − αT Traffic(l, t) − Energy Cost(active), if active,
−Energy Cost(asleep), if asleep.

(13.4)

Here αI and αT are system parameters, and the energy costs can be taken as 3.625 and
0.0912 mJ for active and sleep mode, respectively, which are the energy costs per period
(at 20 Hz) as specified in Section 13.2.1. We use the Proximity and Traffic functions of
(13.2) and (13.3).

If a mobile hub is used, a sensor may adapt (αI , αT ) slowly in time as follows. If the
hub is present, then (αI , αT ) carry their normal values. If the hub is not currently near
the cluster, then αI may be decreased and/or αT may be increased. This will reduce the
incentive for a sensor to activate when the hub is not present, since one may desire fewer
measurements to be taken (and stored locally) in this case.
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In contrast to our approach, consider a more traditional framework for sensor activation.
Groups of sensors would typically agree on a monitoring schedule, based on expected
activity levels. When activity is detected by a sensor, it would wake up other nearby sensors
to extract sufficient information, and also wake up sensors along expected paths of the
target, in the case of mobile target tracking. Note that to implement such a scheme requires
dedicated sensor-to-sensor communication, which requires a highly complex multiple access
communication architecture. The power requirements of such communication is also high,
and can only be lowered by reducing the responsiveness of the network, e.g. by scheduling
synchronization periods every T seconds to reduce the radio duty cycle to roughly 1/T . We
propose the game theoretic approach as one method of circumventing these considerations.

For our scenario, a sensor in active mode produces data at the rate of 2000 packets
per second or 100 packets per each activation decision period (50 ms). In Section 13.4
we formulate the problem of optimal scheduling of the transmission of a finite number of
packets in a Markovian fading channel to trade off energy efficiency and throughput as
a finite-horizon Markov Decision Process with a terminal penalty cost. The objective is
to minimize an expected total cost, which is the sum of accumulated transmission costs
and a penalty cost on the amount of data lost. The optimality of threshold transmission
policy is proved in Section 13.4 using the concept of supermodularity. The threshold struc-
ture substantially reduces the complexity required to implement the optimal transmission
policy.

The interaction between the activation control and transmission scheduling layers is
shown in Figure 13.2. The activation control layer affects the transmission scheduling
layer in two ways. First, transmission only occurs when the sensor is turned on. Second,
when nearby sensors activate, the transmission scheduling layer sees a noisier channel,
and this change in the channel state will be reflected in the transmission decisions of the
sensor. In particular, the activation decisions X−l

n of sensors near l (see (13.9)) affects
the SINR seen by the transmission scheduling layer through (13.29) and hence affects the

Activation Control
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u (t)lOptimize

Transmission Control
(2 kHz / Off)

Activation/
Transmission

Nearby Sensors
Control ofOn / Off

Optimize V(s,:)

Traffic

Target
Proximity

Target

Location

Figure 13.2 Interaction between the Activation Control and Transmission Scheduling
Layers. Transmission scheduling indirectly affects activation control through neighbouring
sensors.
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transmission decisions, which are determined by a precomputed optimal channel-aware
transmission policy.

Conversely, the transmission scheduling layer affects the activation control layer by
feeding back to the sensor activation layer the total transmission energy and data loss costs
during each activation period. A higher cost fedback from the transmission scheduling
layer will cause a sensor l to associate a lower reward with activating (see (13.4)), and
hence activate less often by the algorithm of Section 13.3.2. Lastly, the activation control
of sensors nearby sensor l also affects the activation control of l because transmissions
occur in the active mode.

13.3 Sensor Activation as the Correlated Equilibrium
of a Noncooperative Game

In this section we describe the applicability of game theory to sensor network design, with
a focus on adaptive decentralized implementation. We then describe the regret tracking
algorithm as it pertains to the sensor activation game described above. The main result
is Algorithm 1, which provides a completely decentralized rule for sensor activation that
converges to a correlated equilibrium.

13.3.1 From Nash to Correlated Equilibrium – An Overview

Modern noncooperative game theory originated with John von Neumann in 1928 in the
context of economics, but is increasingly finding applications in computer science and
engineering. In particular, systems with a large number of independent components are well
modeled by game theory when these components act independently. This is particularly
attractive for sensor networks, since such decentralization promises to reduce or eliminate
costly overhead associated with coordinating sensor activity.

Briefly, game theory treats the problem of optimal, interactive decision making among
multiple players. For a game with L players, the problem of each player l = 1, 2, . . . , L

is to select action sl from a set Sl (with size Sl), to maximize a given utility function
ul(s1, s2, . . . , sL). Since each player only controls one of L variables, the problem requires
careful consideration of the actions of other players.

The central concept in noncooperative game theory is an equilibrium, which identifies
stable operating points of the system under certain conditions, such as common knowledge
of rationality. The most important such equilibrium is due to Nash (1951), defined as
follows:

Definition 13.3.1 For each player l, define a strategy π l to be a random variable on Sl , with
distribution f l(s) = Pr(π l = s), and define a strategy profile π to be a random variable on
the product space S = S1 × S2 × . . . × SL, with distribution f (s) = ∏L

k=1 f k(sk). We may
write any strategy π as (π l , π−l ) for any l, where π−l is the strategy profile of all players
but l. The expected utility to l resulting from π is

ul(π) =
∑
s∈S

ul(s)f (s). (13.5)
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π is a Nash equilibrium if each π l is an optimal response to the collection π−l of strategies
of other players. That is,

ul(π l , π−l ) ≥ ul(σ l , π−l), (13.6)

for all l = 1, 2, . . . , L and all possible alternative strategies σ l .

The notation (σ l , π−l ) means that l uses strategy σ l instead of π l . If σ l has distribution
gl , then the profile (σ l , π−l) has distribution f (s) = gl(sl) ·∏k �=l f

k(sk).
In general there can be many Nash equilibria, which are either pure (a single action is

chosen with probability one) or mixed. Significant research has been done into investigating
game structures with certain types of equilibria, e.g. supermodular games by Topkis (1998),
potential games by Monderer and Shapley (1996), etc.

An important generalization of the Nash equilibrium, proposed by Aumann (1974, 1987)
is the correlated equilibrium. Note that in Definition 13.3.1, f is restricted to the space
of product distributions on S. The correlated equilibrium condition simply removes this
restriction, so that players may correlate their random action choices:

Definition 13.3.2 Define a correlated strategy π on S with distribution f (s) = Pr(π = s).
π is a correlated equilibrium if

ul(π l , π−l ) ≥ ul(σ l , π−l), (13.7)

for all l = 1, 2, . . . , L and all possible alternative strategies σ l that are a function of π l .

Strategy π provides each player l with an action ‘recommendation’ al . Based on this, and
knowing π , the player can calculate an a posteriori probability distribution for the actions
of other players, and hence an expected utility for each action. The equilibrium condition
states that there is no deviation rule (represented by a function σ l of π l), that would award
l a better utility in expected terms. Substituting (13.5) into (13.7), we obtain a commonly
used equivalent condition:∑

s−l∈S−l

f (j, s−l)[ul(k, s−l) − ul(j, s−l )] ≤ 0, (13.8)

for all l = 1, 2, . . . , L and all j, k ∈ Sl . That is, for any recommendation j to l, there is
no profitable deviation k.

The correlated equilibrium concept permits coordination between players, and its poten-
tial for improved performance over a Nash equilibrium is shown by Aumann (1987). The
set of correlated equilibria of a game is also structurally simpler; Nau et al. (2004) show it
is a convex set, whereas the set of Nash equilibria are fixed points, coincident with some
of the extrema of this set. Since the set of correlated equilibria is convex, fairness between
players can also be addressed in this domain. Finally, decentralized, online adaptive proce-
dures (see below) naturally converge to the set of correlated equilibria, whereas the same
is not true for Nash equilibria (the so-called law of conservation of coordination of Hart
and Mas-Colell (2003)).

For engineering approaches, the role of game theory is to analyze the behaviour of
decentralized adaptive behaviour in a repeated game. These procedures, outlined below,
allow system components to adapt to a changing environment without explicit coordination.
Players take a sequence of actions, receive utilities, and adjust their actions over time to
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optimize their performance. It is important in this case that the players’ utilities are based
only on local information; if players based their utilities on information from a central
source, it is a clue that the decentralized algorithm being considered could easily be replaced
by a more efficient centralized scheme.

We outline a few adaptive schemes below. In what follows, let n = 0, 1, 2, . . . be
discrete time, let Xl

n denote the action of Player l at time n,g and let X−l
n denote the joint

actions of all player but l at time n.

Best response The simplest scheme, ‘best response’, simply takes

Xl
n+1 = arg max

x∈Sl
{ul(x, X−l

n )},

that is, l reacts optimally, assuming the other players will repeat their previous actions.
Since it fails to account for simultaneous adaptation of multiple players, this approach
converges only in special cases, such as two-player zero-sum games, supermodular games,
potential games, and certain types of submodular games.

Fictitious play This is an improvement over best response, wherein each player calculates
a best response assuming the historical distribution of play is a good predictor of future
actions. That is,

Xl
n+1 = argmaxx∈Sl {ul(x, π̂

−l
n )},

where π̂
−l
n is the empirical joint distribution of play up to time n. Fictitious play and its

variants are extensively studied by Fudenberg and Levine (1999), and enjoy good con-
vergence properties in practice, although convergence to Nash equilibrium is known to be
false in general. One drawback is the need to explicitly observe and model the behaviour
of all opponents, which may not be appropriate for sensor networks.

Regret-based algorithms Alternatively, one can consider a class of algorithms due to Hart
(2005); Hart and Mas-Colell (2000, 2001a,b). These algorithms replace explicit opponent
modelling with an implicit ‘regret matrix’, θ l (n) which tracks, for every pair of actions
i, j ∈ Sl , the difference in utility if l had taken action j in the past everywhere he took
action i. Given Xl

n = i, the probability of Xl
n+1 = j is proportional to θ l

n(i, j), the regret
from i to j . Learning proceeds by exploring actions and switching to actions that are
perceived as ‘better’ according to this regret measure.

We consider this last class of algorithms in the rest of this chapter. The main advantages
of regret-based procedures are ease of implementation, and provable convergence to the set
of correlated equilibria. Maintenance of θ l (n) requires minimal computation and no explicit
awareness of other players. The main disadvantage is that players are required to know
ul(k, X−l

n ) for all possible k ∈ Sl at each n. This requirement is removed in modified regret
matching in Hart and Mas-Colell (2000), and through Step One in Algorithm 1 below,
which estimates the values where needed.

13.3.2 Adaptive Sensor Activation through Regret Tracking

In this section, we apply a regret-based algorithm to solve the decentralized sensor acti-
vation problem. We use a modified version of the regret matching procedure of Hart and
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Mas-Colell (2000), which is presented as a distributed stochastic approximation algorithm.
This formulation allows us to specify an adaptive variant of the original algorithm, called
‘Regret Tracking’, which uses a constant step size to dynamically adapt to time-varying
game conditions, thus allowing sensors to function in a changing environment. The algo-
rithm is provably convergent to the set of correlated equilibria.

At each decision period (at a rate of 20 Hz, see Section 13.2.1), sensors take an action,
either to activate and transmit information or to sleep. Define the sequence of joint sensor
actions {Xn : n = 1, 2, . . .} as a vector-valued, finite state stochastic process in S, such that

Xn = [
X1

n X2
n . . . XL

n

]′
. (13.9)

The regret-based algorithm works by averaging the potential costs associated with past joint
actions {Xn : n = 1, 2, . . .} and using them to choose future actions. The potential costs to
Sensor l under joint action X are collected in a Sl × Sl matrix Hl , with entries

Hl
jk(X) = I {Xl = j} (ul(k, X−l) − ul(j, X−l )

)
. (13.10)

For convenience we collect these into an aggregate matrix,

H(X) = [
(H1(X))′ (H2(X))′ . . . (HL(X))′

]′
, (13.11)

where A′ denotes the transpose of A.
The potential cost requires sensors to know the utility for being active (Action 2) even

when they are asleep (Action 1). Since this is not strictly possible, we approximate the
utility by ûl(2, ·) using a sample and hold method. On an average of every K iterations,
a sleeping sensor activates its sensor inputs (but not its radio) long enough to estimate the
utility for being active. See Step one of Algorithm 1 below. The value K is preprogrammed;
larger values mean less power consumption but also less accuracy. In practice, and for our
two action scenario, we therefore use the approximation:

Hl (X) =
[

0 ûl(2, X−l) − ul(1, X−l)

ul(1, X−l) − ul(2, X−l) 0

]
. (13.12)

The matrices {H(X1), H(X2), . . .H(Xn)} are averaged to yield the sensor regrets {θn :
n = 1, 2, . . .}, where θn is an aggregate LSl × Sl regret matrix,

θn = [
(θ1

n)
′ (θ2

n)
′ . . . (θL

n )′
]′

. (13.13)

θ l
ij tracks the regret from i to j for Player l. The regret matrix θn defines a probability

distribution according to which Xn+1 is chosen, with higher regret-values leading to higher
probabilities.

The regret-based procedure is summarized Algorithm 1, which is carried out indepen-
dently by each sensor. There are two versions of this algorithm. For regret matching, define
a decreasing sequence {εn} satisfying

∑
n εn = ∞, e.g. εn = 1/(n + 1). For regret tracking,

take {εn} to be a constant ε > 0. That is, we allow for either a decreasing or constant step
size algorithm.
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Algorithm 1 The regret-based algorithm for sensor activation has parameters
(ul, µ, {εn : n = 1, 2, . . .}, K, θ l

0, Xl
0), where ul are the player costs, µ is a function of

the costs as in (13.16), {εn} is the SA step size defined above, K is the average interval
between monitoring instances for sleeping sensors, and θ l

0, Xl
0 are arbitrary initial regrets

and actions.

1. Initialization: Set n = 0, initialize regret θ l
0 and take action Xl

0.

2. Repeat for n = 1, 2, . . . :

(a) Cost Estimate

i. If Xl
n = 1 (the sensor is asleep),

A. Generate random κ ∼ Uniform(0, 1).

B. If κ < 1/K , activate target and RF sensing capabilities and update
ulast = ul(2, X−l

n ).

C. Set ûl(2, X−l) = ulast .

ii. If Xl
n = 2 (the sensor is awake), set ulast = ul(2, X−l

n ).

(b) Regret Value Update Update θn using the stochastic approximation (SA):

θ l
n+1 = θ l

n + εn(Hl (Xn+1) − θ l
n), (13.14)

(c) Action Update Choose Xl
n+1 = k with probability

Pr(Xl
n+1 = k|Xl

n = j, θ l
n = θ) =

{
max{θ l

jk, 0}/µ, k �= j,

1 −∑
i �=j max{θ l

j i , 0}/µ, k = j.

(13.15)

The value µ is a normalization constant, which can be taken as

µ > (Sl − 1)(ul
max − ul

min), (13.16)

over all l, which is obtainable from the parameters of the game.
We are most interested in the constant step size algorithm, since it allows sensors to

adapt their activation strategies due to changes in their environment. For example, when
target positions change over time or sensors fail.

In our approach, Sl = 2, with sleep action xl = 1, and wake action xl = 2. Recall the
player utility as given by (13.4), (13.2) and (13.3). This can be rewritten as

ul(x, z) = (xl − 1)
(
αI min

{
M∑

m=1

Am

(�(l, zm))2
+ ηI , KI

}

− αT min

{
L∑

k=1

Bk(x
k − 1)

(�(l, k))4
+ ηT , KT

}
− KE

)
. (13.17)



13.3. SENSOR ACTIVATION AS THE CORRELATED EQUILIBRIUM 363

Note that in addition to the sensor state Xn, we also have the target position Zn, which
denotes the vector of target positions at time n, and (αI , αT ), which may be allowed to
vary if the hub is mobile, see the discussion after (13.4). However, for slowly moving
targets (and hubs) these may be regarded as slowly varying parameters. Noting that games
are equivalent under addition of a constant to each utility, we have taken the sleep cost to
be zero, and KE to be 3.53 mJ, the difference between active and sleep costs in Section
13.2.2. This yields

µ > max{αIKI − KE, αT KT + KE}. (13.18)

The game is submodular. It has many pure Nash equilibria and hence many correlated
equilibria (any convex combination of Nash equilibria is a correlated equilibrium). Best
response is not guaranteed to converge since it is possible for sensors to synchronize their
actions. Moreover, best response requires that a sleeping sensor still knows the actions of
its neighbors, a condition that cannot be met by definition.

13.3.3 Convergence Analysis of Regret-based Algorithms

In this section, we analyze some of the convergence results for Algorithm 1. Due to (13.15),
it is clear from Algorithm 1 that {Xn : n = 1, 2, . . .} is a Markov chain with transition matrix
A(θn) at time n. This is the key to convergence analysis. Formally, it helps to define a
smooth version of the transition matrix of the resulting Markov chain as follows.

Definition 13.3.3 Define ρ(·) to be a twice continuously differentiable matrix-valued func-
tion such that for any δρ > 0, ρ(θ l) = θ l for θ l > 0 and θ l is outside N(0, δρ) a δρ-
neighborhood of 0 and ρ(θ l) = 0 for θ l < 0 and θ l is outside N(0, δρ). For any small
δ, we define the entries of A(θ) by

ajk(θ) = Pr(Xn+1 = k|Xn = j, θn = θ) =
L∏

l=1

al
j lkl , (13.19)

where

al
jk(θ) = Pr(Xl

n+1 = k|Xl
n = j, θn = θ)

= (1 − δ)e′
j

(
1

µ
ρ(θ l )(I − 1e′

j ) + I
)

ek + δ

Sl
, (13.20)

where I is the identity matrix, 1 is a vector of ones, and ej is unit basis vector. The matrix
A(θ) is the transition matrix of the Markov chain {Xn : n = 1, 2, . . .} in the regret-based
algorithms. It is multilinear (L−linear) in θ . In addition, each process {Xl

n : n = 1, 2, . . .}
constitutes an independent Markov chain with transition matrix Al (θ), with entries defined
as in (13.20).

Note that ρ(·) is a smoothed version of max{·, 0}, and that δ is a small probability
of choosing an action from a uniform distribution. These two components are added to
facilitate our analysis; to recover the original algorithm, one would set δ and δρ to zero.

Using asymptotics to characterize the stationary distribution of the Markov chain, and
following a Liapunov-type stability argument, one can prove the following theorem, as in
Hart and Mas-Colell (2001b).
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Theorem 13.3.4 Under multiplayer regret matching, the joint empirical distribution of play
converges to the set of correlated equilibria.

Convergence for regret tracking, and for slowly varying Zn follows in a similar fashion,
although the results are correspondingly weaker. On the other hand, regret tracking allows
the players to behave adaptively, whereas regret matching does not respond well to changes
in the game structure unless the procedure is restarted periodically.

More powerful stochastic approximation techniques, such as differential inclusions and
the ODE method used by Benaim et al. (2005); Kushner and Yin (2003), offer a promising
alternative to proving these convergence results. These methods allow one to define a
deterministic continuous time dynamical system based on a stochastic approximation that
captures the average behaviour of the original system.

The ODE method defines an interpolated process θ ε(t) from the stochastic approxima-
tion, such that θ ε(t) = θn for t ∈ [εn, ε(n + 1)). As n → ∞ and ε → 0, with εn moderate,
averaging theory can be used to show that the limiting behaviour of the ODE is equivalent
to the limiting behaviour of the stochastic approximation. This is true almost surely for
decreasing step size εn and in probability for constant step size εn.

For more complicated systems, the stochastic approximation algorithm must be studied
through the more general equation

θ̇
l
(t) ∈ F(θ(t)).

This differential inclusion approach can handle more general situations, including cases
where the dynamics are not uniquely known.

The key advantage of these two methods is that random behaviour is ‘averaged out’, so
that deterministic analysis can be carried out. For example, Liapunov’s direct method can
be applied to the differential systems to establish stability of the stochastic approximation
algorithms.

Formally, we may apply the ODE method to obtain a differential equation describing
the two regret algorithms:

d

dt
θ(t) = H(θ(t)) − θ(t), (13.21)

d

dt
π̂(t) = π(θ(t)) − π̂(t), (13.22)

where
H(θ) =

∑
xi∈S

H(xi)π i (θ). (13.23)

For δ = 0, A(θ) may possibly have multiple stationary distributions. The differential
inclusion method must be used in this case:

d

dt
θ(t) ∈ F(θ(t)), (13.24)

d

dt
π̂(t) ∈ G(π̂(t), θ(t)), (13.25)
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Figure 13.3 The optimal transmission policy is of the form (13.41) and (13.38), i.e. mono-
tonically increasing and threshold in the buffer occupancy and monotonically decreasing
and threshold in the residual transmission time.

where

F(θ) =
∑

xi∈S

H(xi)π i (θ) − θ : π(θ) = π(θ)A(θ)

 , (13.26)

G(π̂, θ) = {
π(θ) − π̂ : π(θ) = π(θ)A(θ)

}
. (13.27)

While we have stated the results formally, it can be shown that ρ(θ)2 is a Liapunov
function for both systems whenever θ > 0 in some component. This can be used to show
that regret values tend to zero as play continues, and hence is an alternate way of show-
ing convergence to the set of correlated equilibria. Thus, the ODE methods provide a
promising framework for stability analysis for the decentralized stochastic approximation
described here.

13.4 Energy-Efficient Transmission Scheduling in
UGSN – A Markov Decision Process Approach

When a sensor is activated (by Algorithm 1), it measures bearing and range of a target and
forwards data to a hub node over a wireless link. In this section we formulate the problem
of optimal channel-aware transmission scheduling subject to a hard delay constraint as a
Markov Decision Process (MDP) and illustrate the use of the supermodularity concept to
prove monotonicity of the optimal transmission policy.

Assume time is divided into slots of equal size so that at each time slot, one packet can
be transmitted. For generality, we assume that the channel between every sensor and the
hub node is correlated fading. The channel is correlated fading for the following scenarios:

• The hub node is static (or mobile), and the sensors communicate with the local
hub node using the Direct Sequence Code Division Multiple Access (DS-CDMA)
scheme with random (i.e. non-orthogonal) signature sequences. Then the channel
state of every sensor is influenced by interference from other sensors. As sensors
have random awake/ sleep time and unsynchronized, different transmission policies,
the channel state of every sensor is correlated over time.
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• The hub node is mobile, for example, a mini unmanned aerial vehicle (UAV) that
cruises (e.g., at a height in the range of 100 m above the ground and a velocity of
40km/h) through different clusters of sensors to collect information. In this case, the
channel between a ground sensor and the hub node is correlated fading regardless of
the multiple access and modulation schemes.

In a discrete time system, a correlated fading channel is typically modelled by a finite state
Markov chain (FSMC). In Guan and Turner (1999), Wang and Moayeri (1995), Zhang and
Kassam (1999), the procedures for obtaining FSMC models for different physical channels
are given.

At the beginning of each transmission time slot, a sensor knows its quantized channel
state perfectly and decides whether to transmit a packet. A sensor can estimate its channel
state by measuring the signal strength of a beacon broadcast by the local base station,
and possibly the RF activity of other sensors. Intuitively, the motivation for transmitting
a packet is to get data through, and the motivation for possibly delaying a transmission is
not to waste energy, when the channel is in a bad state.

The optimization problem is formulated as a finite horizon MDP, with the objective
being to minimize the expected total cost, which is the sum of transmission costs and
the terminal data loss penalty cost. In other words, we use a MDP approach to optimize
channel-aware transmission policies to conserve energy, subject to a hard delay constraint
that will be described later. Given the MDP formulation, the optimal transmission policy
is proved to be monotone, and hence threshold, in the buffer occupancy and the residual
transmission time using the concept of supermodularity (see Figure 13.3).

The plan of this section is as follows. We will first give a brief introduction to Markov
decision processes and the concept of supermodularity. The second part of the section is
dedicated to formulating the optimal transmission scheduling problem as a MDP and prov-
ing the threshold structure of the optimal transmission policy. At the end of the section,
we briefly describe how the optimal transmission scheduling problem can be formulated
as an infinite horizon, average cost, countable state constrained MDP and how the super-
modularity concept can still be applied to obtain similar structural results.

13.4.1 Outline of Markov Decision Processes and Supermodularity

Markov decision processes

Formally, a Markov decision process (MDP) consists of five tuple (S, T ,A, R, P ), where
S is the system state space, T denotes the decision epochs, A is the action sets, R

is the rewards or costs associated with action-state pairs, and P is a state transition
probability matrix. In this chapter, for simplicity we consider a finite horizon MDP, i.e.
T = 0, 1, . . . , M for some finite M , with the objective being to minimize the total expected
cost. (We refer the reader to Ngo and Krishnamurthy (2007a,b) for an extension of the
results in this section to constrained infinite horizon average cost MDPs). A policy µ

for such a finite horizon MDP consists of M decision rules um(·) : S → A, one for each
decision epoch. The value of each policy µ is given by

V (s, µ) = E

{m=M∑
m=0

r(sm, am)
∣∣s0 = s, µ

}
, (13.28)
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where r(s, a) denotes the instantaneous reward for action a and state s. The optimality
criterion in solving a MDP is then to find a policy to minimize the total expected cost or
maximize the total expected reward above. An optimal policy for a MDP can be found by
solving a stochastic dynamic programming called Bellman’s equation which is based on
the Principle of Optimality developed by Bellman in 1950’s. In Section 13.4.2, the problem
of optimal transmission scheduling is formulated as a MDP and the Bellman’s equation is
(13.34).

Supermodularity in MDPs

In Def. 13.4.1 below we define a supermodular function and its connection to comple-
mentarity in a simple context, where the objective function is a real-valued function of
real variables. The topic of supermodular optimization is studied in great depth in Top-
kis (1998). Therein, the theory relating to lattices, supermodularity, complementarity and
monotone comparative statics is established.

Definition 13.4.1 A function F(x, y) : X × Y → R is supermodular in (x, y) if

F(x1, y1) + F(x2, y2) ≥ F(x1, y2) + F(x2, y1) ∀x1, x2 ∈ X, y1, y2 ∈ Y, x1 > x2, y1 > y2.

If the inequality is reversed, the function F(·, ·) is called submodular.

Supermodularity is a sufficient condition for optimality of monotone policies. Specifically,
the main punch line is the following result regarding the arg max of a supermodular function:

Result 1 (Topkis (1998)) If F(x, y) defined as in Def. 13.4.1 is supermodular (submodular)
in (x, y) then y(x) = arg maxy F (x, y) is non-decreasing (non-increasing) in x.

We will establish supermodularity of the state action cost function that arises in Bell-
man’s equation and then use the above result to prove that the optimal policy (which is
given by the arg max of the state action cost function) is monotone and hence threshold.

13.4.2 Optimal Channel-Aware Transmission Scheduling
as a Markov Decision Process

When a sensor is in the active mode, it measures bearing and range of a target and forwards
the information to a mobile hub node via a wireless link. In particular, an active sensor
samples the target noise at a fast rate (e.g., 200 kHz) and processes the measurements
locally to produce data packets that contain useful information at a lower rate, e.g. 2000
packets per second. When a sensor is in the active mode, it must remain active for at
least one activation/deactivation decision period, during which a large number of packets
are produced. The problem that we consider here is to exploit CSI to transmit the packets
efficiently subject to a hard delay constraint.

Time is slotted so that at each time slot one packet can be transmitted. Assume a
quantized channel state space. As the channel is correlated fading due to mobility of the
hub node (or alternatively, due to the random interference from other active sensors), we
model the evolution of the channel state by a FSMC. At the beginning of each transmission
time slot, a sensor estimates its channel state by measuring the signal strength of a beacon
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broadcast by the local base station, and possibly the RF activity of other sensors.In what
follows, we assume that at the beginning of each time slot a sensor knows its quantized
channel state perfectly and decides whether to transmit a packet.

Assume that every batch of L packets must be transmitted in M ≥ L transmission time
slots. In other words, we assume there is a buffer of size L to store packets and there is a
mechanism to reserve some bandwidth for delayed transmissions, e.g., an ARQ protocol,
to implement the transmission of L packets within M ≥ L transmission time slots. The
values of L and M can be designed to meet some system performance requirements. When
a transmission is attempted, a positive transmission cost, which depends on the Markovian
channel state, occurs. When a transmission is not attempted, the packet is stored in the
buffer and can be transmitted later. At the end of all M transmission time slots, if not
all L packets are transmitted, a penalty cost on the number of untransmitted packets will
occur.

The optimal transmission scheduling problem is to find a transmission policy (Def.
13.4.2) to minimize the expected total cost, which is the sum of the transmission costs and
the data loss penalty cost. The problem is formulated as a MDP and optimality of thresh-
old transmission policies is proved using the concept of supermodularity. The threshold
structure of the optimal transmission policies is outlined in Figure 13.3. In Section 13.5 we
provide numerical examples that illustrate the trade-off between the energy consumption
and data throughput that is achieved by the monotone optimal channel-aware transmission
policy.

Finite state Markov chain transmission channel model

For generality we use a FSMC channel model. Due to the random wake/sleep time of
other sensors and their transmit activities the communication channel state of a sensor
is correlated in time and can be modeled by a Finite State Markov Chain (FSMC). For
example, consider a network where sensors use CDMA with random code sequences for
communications. Assume additive white Gaussian noise (AWGN) of variance σ 2 = 1, the
SINR of a sensor with signal to noise ratio (SNR) γ is given approximately by

h = γ

1 +∑
j∈A γj /S

, (13.29)

where γj is the SNR of sensor j , A contains the indexes of all other active sensors.
It is easy to see that h evolves as a Markov chain if when the number of sensors that

are transmitting data is a Markov chain. In fact, if the number of transmitting sensor is a
Markov chain with a known transition probability matrix P , and the probability distribution
functions of the SNRs are known, then the transition probabilities of h can be computed
straightforwardly for any given quantization of the channel state (SINR) space. Furthermore,
it is reasonable to assume that the number of transmitting sensors is a Markov chain as each
sensor has a random (exponentially distributed) sleeping time and when a sensor wakes,
it deploys a transmission policy that maps the Markovian channel state (SINR), the buffer
occupancy state and the residual transmission time into an action of whether to transmit a
packet.

If the hub node is mobile, e.g., a mini UAV, the communication channel between a
sensor and the hub node is correlated fading regardless of the multiple access scheme
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and can be modelled by a FSMC. The derivation of a FSMC channel model includes
partitioning the channel state space and computing the transition probability matrix. The
details are covered by Guan and Turner (1999); Wang and Moayeri (1995); Zhang and
Kassam (1999).

Now we assume that SINR represents the channel state and that the channel state domain
is divided into K non-overlapping ranges corresponding to K channel states. Denote the
channel state space by H = {�1, �2, . . . , �K}, where �i is a better channel state than �j for
all i > j . Denote the channel state at time slot m by hm, then hm ∈ H and hm evolves as
a Markov chain according to a transition probability matrix P = (pij : i, j = 1, 2, . . . , K),
where pij = P(hm+1 = �j |hm = �i) for all m = 1, 2, . . . .

Optimal channel-aware transmission scheduling problem statement

Assume every batch of L packets needs to be transmitted within M transmission time slots
while the channel state evolves according to a FSMC as described above.Let the time index
m = 0, 1, . . . , M denote the number of remaining transmission time slots, i.e. the residual
transmission time. At each time slot, the system state is defined by the CSI h ∈ H, and the
number of packets that are not yet transmitted (i.e. the number of packets in the buffer;
the buffer occupancy state) i ∈ I, where I = {1, 2, . . . , L} is the buffer state space. In
summary, at residual time m, the system state can be denoted by sm = [im, hm] ∈ S, where
S = I × H is the system state space.

Denote the action set by A = {0, 1}, where 0 and 1 stand for the actions of not trans-
mitting and transmitting respectively. In a time slot, if action a ∈ A is selected, the sensor
has to pay an instantaneous transmission cost

g(·, ·) : H × A → R, (13.30)

where g(h, a) is decreasing in h, increasing in a and g(h, 0) = 0. A transmission policy
consists of M decision rules the decision epochs m = 1, 2, . . . , M . A decision rule at time
m is a function mapping states to actions um : S → A. Then a transmission policy can be
written as µ = (

u1(·, ·), . . . , um(·, ·)). A formal definition of a transmission policy is given
below. We also denote the space of admissible transmission policies defined by Def. 13.4.2
by M.

Definition 13.4.2 A transmission policy is a function mapping the residual transmission
time, the buffer state and the channel state information into an action:

µ : {1, . . . , M} × S → A. (13.31)

At the end of all M time slots, i.e. when m = 0, a penalty cost incurs on the untrans-
mitted packets. A data loss cost function can be modified to meet specific requirements of
the application but must be nondecreasing in the number of untransmitted packets, i.e. the
terminal buffer occupancy state. We assume the general model where the penalty cost func-
tion maps the terminal buffer state to a cost: C(·) : I → R, where C(i + 1) ≥ C(i) ∀i ∈ I
and C(0) = 0.
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The expected total cost is given for a transmission policy µ = (um(·, ·) : m = 1, 2, . . . ,

M) and an initial state s ∈ S by

V (s, µ) = E

{m=M∑
m=1

c(sm, um(·, ·)) + C(i0)
∣∣sM = s, µ

}
, (13.32)

where c(sm, um(·, ·)) = g(hm, um(hm, im)). The MDP problem is to find a transmission
policy µ∗ = (u∗

m(·, ·) : m = 1, 2, . . . , M) that minimizes the expected total cost given above
for all initial state s ∈ S:

V (s, µ∗) = V (s)
*= inf

µ∈M
V (s, µ). (13.33)

The MDP formulated above is a generalization of the classic terminal cost MDP con-
sidered in Derman et al. (1976); Ross (1983), where the monotone structure of the optimal
policy is proved for the case of a constant channel state. The methodology deployed in
Derman et al. (1976) and Ross (1983) can only work for a constant or i.i.d. channel state.
The monotone structure proof in this chapter, however, works for the FSMC channel model,
and hence for the i.i.d. or constant channel model. In addition, in Ngo and Krishnamurthy
(2006), we consider a more general resource allocation problem, where the success trans-
mission probabilities depend on the channel state, and transmitted packets that are not
successfully received can be retransmitted. In that case there needs be an error-free feed-
back channel so that the outcome of each transmission is known at the transmitter. In this
chapter, the success probability is assumed to be equal to 1 for the action a = 1. The
motivation for this simplification is to obtain a simple optimal channel-aware transmission
policy that exploits CSI to conserve energy and that does not require a feedback channel.

13.4.3 Optimality of Threshold Transmission Policies

The optimal transmission policy can be denoted by µ∗ = (u∗
m(·, ·) : n = 1, 2, . . . , M),

where the decision rules u∗
m(·, ·) : n = 1, 2, . . . , M are the solution of the following stochas-

tic dynamic programming recursion called Bellman’s equation (Puterman (1994)):

Vm(i, h) = min
a∈A

Qm(i, h, a), (13.34)

u∗
m(i, h) = arg min

a∈A
Qm(i, h, a), (13.35)

where

Qm(i, h, a) =
{
g(h, a) +

∑
t∈H

phtVm−1(i − a, t)

}
, (13.36)

and Vm(0, h) = 0, V0(i, h) = C(i). We refer to the Vm(·, ·) defined by (13.34) as the value
function and Qm(·, ·, ·) defined by (13.36) as the state action cost function respectively.3

The optimality of threshold transmission policies is proved using supermodularity in
two steps, see Heyman and Sobel (1984) and Puterman (1994),

3In reinforcement learning of MDPs, the state action cost function is also called the Q function, see Bertsekas
and Tsitsiklis (1996).
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1. Step 1: Prove monotonicity of the value function in the state using mathematical
induction. For an arbitrary finite state, finite action MDP, as shown in Heyman and
Sobel (1984), a sufficient condition for this to hold is that for any fixed action, each
row of the transition probability matrix is first order stochastically dominated by the
next row. It turns out that in our case due to the block diagonal structure of the transi-
tion probability matrix for the system state s = [i, h], this property straightforwardly
holds.

2. Step 2: Prove Supermodularity of the state action cost function: We show that the
state action cost function Qm(i, h, a) defined by (13.36) is supermodular/submodular
(see Def. 13.4.1) using mathematical induction. The threshold structure of the optimal
transmission policy then follows from Result 1.

In Heyman and Sobel (1984), assume that the value function is monotonically nondecreas-
ing in the action, Step 2 (supermodularity) of the state action cost function is established
by imposing a condition on the matrix obtained by taking the difference between the two
transition probability matrices for the two different actions. The condition is that each row
of this matrix has a tail sum that is dominated by the next row’s tail sum. In the optimal
transmission scheduling problem that we consider, we have an augmented system state
s = [i, h] and this condition is not satisfied. Hence, we deploy a different approach in our
proof of Theorem 13.4.4, that corresponds to Step 2. We show that the value function is
monotone and convex (in the buffer state) and submodular (in the buffer state and the
residual transmission time). From submodularity of the value function, we prove super-
modularity of the state action cost function in the action and the residual transmission time
and submodularity of the state action cost function in the action and the buffer state.

We start with establishing Step 1 (monotonicity of the value function).

Lemma 13.4.3 The value function Vm(i, h) defined by (13.34) is increasing in the number
of remaining packets, i.e. buffer state i and decreasing in the residual transmission time m.

Proof. See the appendix

We now establish Step 2 (supermodularity).

Theorem 13.4.4 If C(·) is an increasing function (of the number of untransmitted packets,
i.e. the terminal buffer state) then the state action cost function Qm(i, h, a) is supermodular
in (m, a), i.e.

Qm(i, h, 1) − Qm(i, h, 0) ≤ Qm+1(i, h, 1) − Qm+1(i, h, 0). (13.37)

As a result, the optimal transmission policy is threshold in the residual transmission time,
i.e.

u∗
m(i, h) =

{
1 if m < m∗

i,h

0 otherwise,
(13.38)

where m∗
i,h is the optimal residual transmission time threshold for buffer state i and channel

state h.
Furthermore, if the penalty cost C(·) is an increasing function and satisfies (13.39)

C(i + 2) − C(i + 1) ≥ C(i + 1) − C(i) ∀i ≥ 0 (13.39)
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then the state action cost function Qm(i, h, a) is submodular in (i, a), i.e.

Qm(i, h, 1) − Qm(i, h, 0) ≥ Qm(i + 1, h, 1) − Qm(i + 1, h, 0). (13.40)

As a result, the optimal transmission policy is threshold in the buffer state, i.e.

u∗
m(i, h) =

{
1 if the buffer state i > i∗m,h

0 otherwise,
(13.41)

where i∗m,h is the optimal buffer state threshold for residual transmission time m and channel
state information h. Furthermore, i∗m,h is increasing in m.

Proof. See the appendix.

Summary of sensor activation and transmission scheduling algorithm
for UGSN

For the reader’s convenience, we now summarize the entire two-time scale algorithm devel-
oped in this chapter. The algorithm is schematically depicted in Figure 13.1. The optimal
transmission thresholds i∗m,h in (13.41) are computed offline (as described below) and then
stored in a look-up table.

Algorithm 2 Set the sensor activation time index n = 0, initialize θ l
0 arbitrarily and take

arbitrary initial action Xl
0 as in Algorithm 1 in Section 13.3.2. At each subsequent time

index n, repeat

1. Sensor Activation: By Algorithm 1 in Section 13.3.2

2. While in active mode

Initialize the residual transmission time index m = M , Buffer state i = L

For m = M, M − 1, . . . , 1

Estimate channel state h by measuring RF activity of other sensors

Check current buffer state i

If i ≥ i∗m,h, where i∗m,h is the optimal transmission threshold in (13.41)
then TRANSMIT, i = i − 1

End For

Reset k = M

Significance of threshold structural result

The threshold results proved in Theorem 13.4.4 can be used to reduce the computational
complexity required for solving the dynamic programming problem and implementing the
optimal policy. Heyman and Sobel (1984) give several algorithms (e.g., value iteration,
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policy iteration) that exploit monotone results to efficiently compute the optimal policies.
For a finite horizon MDPs, threshold structural results can be exploited in forward/backward
induction. In order to illustrate the significance of the threshold results, let us consider an
example where we need to transmit L = 10 packets in M = 15 time slots in a Markovian
fading channel with K = 2 channel states. The total number of transmission policies is
2MLK = 2300. In comparison, the number of transmission policies that are threshold both
in the number of transmission time slots remaining and the buffer state is MLK = 1502,
i.e. the space of admissible optimal policies is reduced significantly.

The threshold results also reduce the memory required to store to optimal transmission
policies. Consider an example with a larger state space. Assume that we need to transmit
L = 100 packets within M = 125 time slots in a Markovian fading channel with K = 8
channel states. Without structural results, the memory required to store the optimal trans-
mission policy is MLK ∗ 1 = 100 kbits. By the result of Theorem 13.4.4, for each channel
state h, we only have to store the increasing threshold i∗m,h. It is easy to design a scheme
for storing only i0,h and the incremental values, i.e. i∗m+1,h − i∗m,h. In this case, the memory
required to store to optimal transmission policies is approximately MK ∗ � = � kbits,
where � is the number of bits required to store the incremental values. For L = 100, �

should be at most 2 bits, hence the memory required for storage of the optimal transmission
policy is 2 kbits.

Hence, assuming the channel state transition matrix is known and the transmission cost
and the terminal penalty cost are properly selected, the optimal transmission scheduling
policy can be precomputed with much less computational complexity (see Heyman and
Sobel (1984), Puterman (1994)), and stored with minimal memory as described above.

Monotonicity of average cost constrained optimal transmission policy

The delay-critical optimal transmission scheduling problem can also be formulated as an
average cost constrained MDP. Ngo and Krishnamurthy (2007a), and (2007b) consider the
transmission scheduling/rate control problem for the same system model with a buffer of
infinite capacity and an ARQ protocol for retransmission. We formulate the optimization
problem as an infinite horizon, average cost, countable state MDP with a constraint on the
average delay cost.

The most common procedure to derive the structure of the optimal policy for an average
cost countable state constrained MDP involves the following steps:

1. Determine conditions for recurrence of the Markov chains, which is essential to show
the existence of a stationary optimal policy.

2. Use the Lagrange multiplier method to convert the constrained MDP into a parame-
terized unconstrained MDP.

3. Analyse the structure of the Lagrange unconstrained average cost optimal policy. Typ-
ically, an average cost optimal policy can be viewed as a limit point of a sequence of
discounted cost optimal policies. In addition, proving structural results for discounted
cost MDPs is normally more straightforward due to convergence of the value itera-
tion algorithm. In other words, by relating average cost and discounted cost optimal



374 GAME THEORETIC ACTIVATION AND TRANSMISSION

policies, structure of the Lagrange unconstrained average cost optimal policies can
be derived using the usual approach, e.g., using the supermodularity concept.

4. Typically, it then follows that the constrained optimal policy is a randomized mixture
of two Lagrange average cost optimal policies with the structure that has been proved
in the previous step.

In Ngo and Krishnamurthy (2007a) and (2007b), we follows the above steps and prove
that the constrained optimal transmission/resource allocation policy is a randomized mixture
of two stationary, deterministic transmission policies that are monotonically increasing in
the buffer occupancy state. That is the stationary average cost constrained optimal policy
is µ∗ = (u∗(·))∞ with

u∗(·) = qu∗
1(·) + (1 − q)u∗

2(·), (13.42)

where q ∈ [0, 1] is the randomize factor and u∗
1(·) and u∗

2(·) are deterministic and monotone
in the buffer state, i.e. of a form similar to (13.1) if there are only two actions allowed.

The first advantage of the infinite horizon, average cost countable state constrained
MDP formulation is that the optimal policy is stationary, hence the implementation of the
optimal policy is simplified. Furthermore, for an infinite horizon MDP, online estimation
of the optimal policy is possible via algorithms such as Q-learning. Therefore, monotone
structural results are particularly useful since they substantially improve the efficiency of
the reinforcement learning algorithms. In Ngo and Krishnamurthy (2007a), the monotone
structure is also exploited not only in a real-time Q-learning-based algorithm but also to
derive a gradient-based monotone policy search algorithm. For the latter, a deterministic,
monotone transmission policy is represented by a parameterized smooth function with the
use of a mollifier, and the discrete monotone policy search problem is converted into
estimating the optimal parameters, i.e. a continuous optimization problem, which can be
numerically solved via available gradient-based algorithms.

13.5 Numerical Results

In this section we present simulation results illustrating the algorithms in Sections 13.3.2
and 13.4 for representative scenarios. We present the results for each section separately,
which best demonstrates the efficiency of the algorithms.

13.5.1 UGSN Sensor Activation Algorithm

The sensor activation algorithm (Algorithm 1) specifies that sensors should activate only
when they are close enough to a target, and far enough from other active sensors. In
this section we discuss the performance of the regret tracking algorithm for the following
scenario:

• The UGSN comprises of L = 500 sensors deployed at random over a 100 × 100
meter grid.

• Each sensor l radiates RF transmission power Bl µW at one metre, according to a
Gaussian distribution with mean 10 and variance 0.5.
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• For simplicity, we consider M = 1 target, which radiates an acoustic signature with
intensity Am at one metre, according to a Gaussian distribution with mean 0.01 and
variance 0.0005. The algorithm works similarly for M > 1 targets.

• The activation cost KE is taken as 3.53 mJ, as in (13.17).

• The acoustic saturation value is sensor KI = 0.0004, which is equivalent to the
acoustic intensity of a single target at a range of five metres.

• The RF saturation value is KT = 0.123 µW, which is equivalent to the RF intensity
of a single neighbour at a range of three metres.

We also specify the reward weights αI , αT , according to the following design criteria.
If no other sensors are active, a sensor should receive positive utility if a target is less than
ten metres away, and negative utility otherwise. Since utility decreases with distance, we
therefore specify:

ul(2el, 10) = αI

0.01

102
− 3.53 = 0 ⇒ αI = 35300,

where el denotes a unit vector in the lth component in L−space. Likewise, we specify that
a sensor should receive positive utility if there is one other active sensor at a range greater
than six metres, when the target is closer than six metres. That is,

ul(2el + 2ek, 6) = αI

0.01

62
− αT

0.01

64
− 3.53 = 0 ⇒ αT = 813312.

The above parametrization of the utility is a design choice, intended to result in a certain
level of sensor participation. If other parameters are chosen, the sensor activation pattern
will be correspondingly different, however, convergence to the (different) set of correlated
equilibria will still hold, and convergence times will be approximately unchanged.

The sensor activation protocol was simulated using Matlab, and the outcomes from
several runs were used to obtain the results below. In Figure 13.4, we show the sensor
response to a jump change in the system. With εn = 0.3 set in (13.14) in Algorithm 1, it
takes an average of 16 iterations (approx. one second at 20 Hz) for sensors to react to the
sudden appearance of a target. After another three seconds the sensors have reconfigured
to an equilibrium position. When the target disappears, it takes an average of 22 iterations
(one second) for all nearby sensors to return to sleep mode. For a few runs, a small number
of sensors remain active for approximately 100 iterations (five seconds).

We also show the sample convergence time for a stationary target in Figure 13.5.
Next, we analyze the tracking performance for a moving target, with an average veloc-

ity of six metres per second. Specifically, we simulate a target that updates its position
(x(n), y(n)) 20 times per second, such that

x(n + 1) = x(n) + vx(n) + wx(n), (13.43)

y(n + 1) = y(n) + wy(n), (13.44)

where wx(n) and wy(n) are independent, uniform random variables with mean 0 and
variance 1/12. We also specify hard boundaries at the edge of the sensor field; if xn or yn
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Figure 13.4 Sensor activation response to sudden appearance/disappearance of a target
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Figure 13.5 Time for convergence of regret values to zero. The data was obtained from
10 independent simulations of Algorithm 1 with a stationary target appearing at time zero.
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are outside the range (0, 100), they are truncated to lie within this range. We simulate the
system over 40 seconds (800 iterations). For n <= 266 we set vx(n) = 0.3, which causes
the target to move from left to right, eventually sticking to the right-hand edge of the sensor
field at about n = 220 iterations. We then change the target direction, setting vx(n) = −0.3
for 266 < n < 533. For n >= 534, vx(n) = 0.3 again.

The base station receives all the sensor measurements and estimates the instantaneous
target positions. (We assume here that the target dynamics are not taken into account in
the estimates; improved estimates could be obtained if the dynamics are known.) Assume
that variance of the target position estimates is inversely proportional to the total acoustic
energy received by the active sensors, such that if the received energy is 0.0012, (equivalent
to three readings at five metres), then the variance is 0.12 m2. That is,

σ 2
x̂ (n) = σ 2

ŷ (n) = 1.44 × 10−4

(
L∑

l=1

min

{
M∑

m=1

Am

(�(l, zm))2
+ ηI , KI

})−1

. (13.45)

The measurement variance, averaged over 50 simulation runs, is plotted in Figure 13.6.
The activation algorithm tracks the target well, with only two or three sensors close to

the target activating at any time. Due to the requirement for sensor separation, sensors tend
to activate on all sides of the target, thereby obtaining diverse measurements. Simulation
also shows that the regret values tend to zero, as expected.

Lastly, we perform a simulation to illustrate how active sensors cluster around the
target. A target moves slowly from bottom right to top left of the sensor field of 500
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Figure 13.6 Measurement accuracy of target at the base station for 500 sensors in a 100 m2

field. An average of three sensors are active during most of the simulation; the peak occurs
when the target is at the edge of the sensor field, where on average only two sensors are
active.
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(a.) Activation of Sensors Around a Moving Target
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(b.) Snapshot of Active Sensors 
at n = 70 Iterations
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(c.) Snapshot of Active Sensors 
at n = 230 Iterations

Figure 13.7 (a.) Activation history for sensors tracking a single moving target in the
unattended ground sensor network (UGSN). The scenario contains 500 sensors in a 100 m2

field. The target trajectory is shown by a solid line, the activated sensors are shown as
circles. Figures (b.), (c.) depict snapshots of the same target trajectory and activated sensors
at iterations 70 and 230. The target positions are shown as diamonds. The active sensors
in the UGSN surround the target. The x’s indicate the position of inactive sensors.

sensors along the trajectory in Figure 13.7. The figure also shows the history of all sensors
that were activated under Algorithm 1 to track the target. The results show that only sensors
close to the target are ever active. Several snapshots illustrate the exact configuration of
active sensors around the target at a given time. The sensors surround the target, indicating
good spatial diversity.

13.5.2 Energy Throughput Tradeoff via Optimal Transmission
Scheduling

When a sensor in the UGSN is activated by the correlated equilibrium learning algorithm
(Algorithm 1), it has to collect and then forward data to a local hub node for data fusion
in a timely manner while conserving energy. The structure of the optimal transmission
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policy has been analyzed in Section 13.4.2, here we provide a numerical example to
illustrate these structural results and analyse the energy-throughput tradeoff that can be
achieved.

In particular, we assume the delay constraint is that every batch of 70 packets has to be
transmitted within 100 transmission time slots, i.e. 30% of the bandwidth is reserved for
delayed transmissions. Assume SNR presents channel state and the underlying channel is
Rayleigh fading. Assume a carrier frequency fc = 1.9GHz, the packet transmission time
T = 0.5 ms (as the packet transmission rate is 2000 packets per second). Assume the local
hub node is moving at the velocity of 20 km/h, which leads to a Doppler frequency of
35.1852 Hz. Using the SNR partitioning method in Zhang and Kassam (1999), the channel
state can be modelled by a five state Markov chain, i.e. H = (�1, �2, . . . , �5), where
�1, . . . , �5 correspond to the SNR ranges (−∞, 0.7), [0.7, 6), [6, 9), [9, 12), [12,∞)

dB, respectively. The corresponding transition probabilities are given approximately by

pkk = 0.8, pk,k−1 = pk,k+1 = 0.1 for k = 2, 3, 4,

p11 = 0.8, p12 = 0.2, p54 = 0.1, p55 = 0.9.

Assume that the transmission energy cost function is given by

g(u, h) = 2I (u = 1)/
√

h, (13.46)

and the data loss cost function is given by

C(i) = λi2, (13.47)

for some λ ∈ [0.05, 1]. A higher value of λ emphasizes the importance of data throughput.
It should be noted that the transmission cost and data loss penalty cost functions can be of
any form other than the functions we consider here. In fact, designing proper transmission
and data loss cost functions is an important problem, which is beyond the scope of this
chapter.

For the above numerical example, the optimal transmission scheduling policies are
computed using monotone-policy forward induction (see Puterman (1994)) and plotted in
Figure 13.8. It can be seen from the figure that the optimal policies indeed have the threshold
structure as proved in Theorem 13.4.4. In particular, when there are 60 transmission time
slots remaining and the channel state is h = �4, the optimal action is to transmit if and
only if there are more than 46 packets in the buffer (i.e. less than 24 packets have been
transmitted).

In addition, Figure 13.9 depicts the tradeoff between energy efficiency and throughput
that can be achieved by a sensor via the optimal threshold transmission policy. It can be
seen that for 30% of the bandwidth reserved for delayed transmissions, the energy sav-
ing is very significant. In particular, in comparison to a (non channel-aware) policy of
always transmitting, the optimal channel aware transmission policy offers a throughput
rate of approximately 98% for about 60% of the total transmission energy cost. It should
be noted that, the optimal transmission scheduling policy requires that some bandwidth is
reserved for opportunistic transmission. This is not a stringent requirement since the rate
at which packets are produced is relatively low in comparison to standard wireless data
transmission rates.
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Figure 13.8 At any give time slot, for any given channel state h, the optimal transmission
policy is threshold in the buffer state, i.e. u∗

m(i, h) is of the form (13.41), where the optimal
buffer state threshold i∗m,h is increasing in m.
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Figure 13.9 A throughput rate of 98% is achieved while the total energy cost is reduced
to 60% assuming that 30% of the bandwidth is reserved for delayed transmission.
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13.6 Conclusion

Energy-efficient design for unattended ground sensor networks (UGSN) requires a highly
integrated approach. Increasing the autonomy and intelligence of sensors is critical to
reducing costly communication overhead associated with coordinating sensors, but this
must be done carefully. We have presented here computationally efficient algorithms for
sensor activation and transmission scheduling. The tools used such as correlated equilibria
of non-cooperative games, stochastic approximation, stochastic dynamic programming, and
supermodularity, are useful in the design and analysis of sensor networks.

We conclude with a discussion of three useful extensions of the methods in this chapter.
1. Stochastic Sensor Scheduling: In this chapter we have considered sensor activation

and communication in an UGSN. A third important aspect of an UGSN, which we have
not considered, is sensor signal processing and scheduling, i.e., how each sensor unit in the
UGSN locally senses and processes data. Typically, each individual sensor unit in an UGSN
has a suite of sensors available for measurement of target type and target coordinates. Due
to communication and battery costs, each sensor unit can only deploy one or a few of
these sensors at each time instant. Usually more accurate sensors are more expensive to
deploy. The stochastic sensor scheduling problem deals with how these sensors should be
dynamically scheduled to optimize a cost function comprising of the Bayesian estimate of
the target and the usage cost of the sensors. Such problems are partially observed stochastic
control problems as considered in Baras and Bensoussan (1989). We refer the reader to
the work of Krishnamurthy (2002) for the partially observed Markov decision process
(POMDP) sensor scheduling problem. More recently, Krishnamurthy and Djonin (2007)
show, using supermodularity on the information state space with respect to the monotone
likelihood ratio ordering, that under reasonable conditions, the optimal sensor scheduling
policy is monotone.

2. Analysis of stochastic approximation algorithms: The constant step size learning algo-
rithm (Algorithm 1 in Sec. 13.3.2) presented in this chapter converges weakly to the set of
correlated equilibria of a non-cooperative game. As mentioned in Sec. 13.3, the algorithm
can be used to track a slowly time varying correlated equilibrium set caused due to a
slowly moving target. Moreover, the limiting behaviour of the algorithm is captured by a
differential inclusion. Suppose we were to assume that the target moves according to a slow
Markov chain with transition probability matrix I + εQ (where ε > 0 is a small parameter
and Q is a generator matrix with each row summing to zero). With this assumption on the
target, how can one analyze the tracking performance of the learning algorithm (Algorithm
1) with step size ε? Note that the adaptation speed (step size ε) of the algorithm matches
the speed at which the correlated equilibrium set changes (transition matrix (I + εQ)). In
our recent work Yin et al. (2004) and Yin and Krishnamurthy (2005), we have shown that
the limiting behaviour of the stochastic approximation algorithm for tracking a parameter
evolving according to a Markov chain is captured by a Markovian switched ordinary differ-
ential equation. This result was somewhat remarkable, since typically the limiting process
of a stochastic approximation algorithm is a deterministic ordinary differential equation.
We conjecture that the limiting (see Benveniste et al. (1990)) behaviour of Algorithm 1 is



382 GAME THEORETIC ACTIVATION AND TRANSMISSION

captured by a Markovian switched differential inclusion. This analysis requires use of yet
another extremely powerful tool in stochastic analysis namely, the so called ‘martingale
problem’ of Strook and Varadhan, see Ethier and Kurtz (1986) and Kushner (1984) for
comprehensive treatments of this area.

3. Constrained Markov Decision Processes. Monotone Policies and Reinforcement
Learning Algorithms: Due to time-critical nature of the data being monitored by the UGSN,
the sensor transmission scheduling problem in Sec. 13.4 was formulated as a finite horizon
MDP with a terminal penalty cost. Another possibility is to formulate the problem as an
infinite horizon average cost MDP with delay constraints. It is well known that for such
constrained MDPs, the optimal policy can be randomized function of the state. A natural
question then is whether one can demonstrate some form of monotonicity of the optimal
randomized policy. Since the optimal policy is randomized it cannot be directly obtained via
stochastic dynamic programming – or put another way, stochastic dynamic programming
cannot directly deal with global constraints.4 Altman (1999) and coworkers have introduced
a powerful methodology based on Lagrangian dynamic programming which comprises of a
two level optimization: At the inner step one solves a dynamic programming problem with
a fixed Lagrange multiplier to obtain a pure policy. At the outer step one optimizes the
Lagrange multipliers – these Lagrange multipliers determine the randomization coefficients
for switching between the pure policies. The supermodularity methods in this chapter can
be applied to the inner step to show that the pure policy is threshold. Then as a result of the
outer optimization step, the optimal policy is a randomized mixture of threshold policies.
We refer the reader to Djonin and Krishnamurthy (2006) for a detailed exposition and
also reinforcement learning algorithms that exploit this monotone structure. In Abad and
Krishnamurthy (2003), a gradient estimation approach was used to devise reinforcement
learning algorithms for such constrained MDPs.

13.7 Appendix

13.7.1 List of Symbols

Section 13.3, Sensor Activation

Variable Interpretation

l ∈ L Label of sensor; set of all sensors.
ul(·) Utility of sensor l given action.
Xn;Xl

n;X−l
n Joint action at time n; action of l, action of all sensors but l.

Hl (X) Instantaneous regret matrix.
θ l Average regret matrix.
�(l, k) Distance from l to position of k (target or sensor)
Am, Bl Signal intensity of target m; sensor l.
ηI , ηT Gaussian noise in measurement of target; sensor signal.
KI , KT , KE Physical sensor parameters.
αI , αT Programmable utility parameters.

4The optimal randomized policy can be obtained as the solution of a linear programming problem.
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Section 13.4, Transmission Scheduling

Variable Interpretation

m Residual transmission time
M Total number of transmission time slots
s,S System state; system state space
h,H Channel state; channel state space
i,L Buffer occupancy state; buffer occupancy state space
A Action space
g(·, ·) Transmission cost
C(·) Terminal penalty cost
u(·) Decision rule
µ = (um(·) : m = 1, 2, . . . , M) Transmission policy
V (·, ·) Value function
Q(·, ·, ·) State action cost function (or Q-function)
µ∗ Optimal transmission policy
I(·) Indicator function

13.7.2 Proof of Lemma 13.4.3

V0(i, h) is increasing in i since C(.) is increasing. From the definition of Vm(i, h) given by
(13.34) and (13.36), the monotonicity of Vm(i, h) in i follows immediately by induction.

It is clear that V1(i, h) ≤ V0(i, h) since V1(i, h) ≤ Q1(i, h, 0) = ∑
t∈H

phtV0(i, t) =
C(i) = V0(i, h). The monotonicity of Vm(i, h) in m then follows straightforwardly from
the definition of Vm(i, h) given by (13.34), (13.36).

13.7.3 Proof of Theorem 13.4.4

First note that

Qm(i, h, 1) − Qm(i, h, 0) = g(h, 1) +
∑
t∈H

pht

(
Vm−1(i − 1, t) − Vm−1(i, t)

)
. (13.48)

Then it is clear that Qm(i, h, a) is supermodular in (m, a) if and only if Vm(i, h) is sub-
modular in (m, i). Similarly, Qm(i, h, a) is submodular in (i, a) if and only if Vm(i, h) has
increasing differences in the buffer state i. The proof consists of two parts as below.

Part 1: Vm(i, h) is submodular in (i,m) and hence (13.37) and (13.38) hold

We prove by mathematical induction that

Vm(i + 1, h) − Vm(i, h) ≥ Vm+1(i + 1, h) − Vm+1(i, h). (13.49)

First, (13.49) holds for m + i = 0 since Vm(i, h) is nonincreasing in m. Assume that
(13.49) holds for n + i = k. We will prove that it holds for m + i = k + 1. Let Vm+1(i +
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1, h) = Qm+1(i + 1, h, a11), Vm+1(i, h) = Qm+1(i, h, a10),Vm(i + 1, h) = Qm(i + 1, h,

a01), Vm(i, h) = Qm(i, h, a00) for some a00, a01, a10, a11. We have to prove that

Qm+1(i + 1, h, a11) − Qm+1(i, h, a10) − Qm(i + 1, h, a01) + Qm(i, h, a00) ≤ 0

⇔Qm+1(i + 1, h, a11) − Qm(i + 1, h, a01) − Qm+1(i, h, a10) + Qm(i, h, a00) ≤ 0

⇔Qm+1(i + 1, h, a11) − Qm+1(i + 1, h, a01)︸ ︷︷ ︸
≤ 0 (By optimality)

+Qm+1(i + 1, h, a01) − Qm(i + 1, h, a01)︸ ︷︷ ︸
A

− (Qm+1(i, h, a10) − Qm(i, h, a10))︸ ︷︷ ︸
B

+(−Qm(i, h, a10) + Qm(i, h, a00))︸ ︷︷ ︸
≤ 0 (By optimality)

≤ 0. (13.50)

By induction hypothesis we have

A =
∑
t∈H

pht

(
I (a01 = 1)

[
Vm(i, t) − Vm−1(i, t)

]+ I (a01 = 0)

[
Vm(i + 1, t) − Vm−1(i + 1, t)

])
≤
∑
t∈H

pht

[
Vm(i, t) − Vm−1(i, t)

]
.

Similarly, B ≥ ∑
t∈H

pht

[
Vm(i, t) − Vm−1(i, t)

]
. Hence, B ≥ A.

Therefore, Vm(i, h) satisfies (13.49), which implies that Qm(i, h, a) is supermodular in
(m, a) as in (13.37). It then follows that the optimal transmission policy um(·, ·) given by
(13.35) satisfies (13.38).

Part 2: Vm(i, h) has increasing differences in i hence (13.40) and (13.41) hold

Here we prove by mathematical induction that

Vm(i + 2, h) − Vm(i + 1, h) ≥ Vm(i + 1, h) − Vm(i, h). (13.51)

First, (13.51) holds for m = 0 due to (13.39). Assume (13.51) holds for m = k. We
will prove that it holds for m = k + 1. Let Vk+1(i + 2, h) = Qk+1(i + 2, h, a2), Vk+1(i +
1, h) = Qk+1(i + 1, h, a1), Vk+1(i, h) = Qk+1(i, h, a0) for some a0, a1, a2. We then have
to prove that

Qk+1(i + 2, h, a2) − Qk+1(i + 1, h, a1) − Qk+1(i + 1, h, a1) + Qk+1(i, h, a0) ≥ 0

⇔Qk+1(i + 2, h, a2) − Qk+1(i + 1, h, a2)︸ ︷︷ ︸
A

+Qk+1(i + 1, h, a2) − Qk+1(i + 1, h, a1)︸ ︷︷ ︸
≥ 0 (By optimality)

−Qk+1(i + 1, h, a1) + Qk+1(i + 1, h, a0)︸ ︷︷ ︸
≥ 0 (By optimality)

− (Qk+1(i + 1, h, a0) − Qk+1(i, h, a0))︸ ︷︷ ︸
B

≥ 0.

(13.52)



BIBLIOGRAPHY 385

In addition, it follows from the induction hypothesis that

A =
∑
t∈H

pht

[
I (a2 = 1)(Vk(i + 1, t) − Vk(i, t)) + I (a2 = 0)(Vk(i + 2, t) − Vk(i + 1, t))

]
≥
∑
t∈H

pht (Vk(i + 1, t) − Vk(i, t)). (13.53)

Similarly, B ≤ ∑
t∈H

pht (Vk(i + 1, t) − Vk(i, t)). Hence, A − B ≥ 0.

Therefore, Vm(i, h) satisfies (13.51), which implies that Qm(i, h, a) given by (13.48)
is submodular in (i, a). Hence the optimal transmission policy um(·, ·) given by (13.35)
satisfies (13.41).
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Channel state information, see CSI
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